1.北京理工大学 光电学院, 北京市混合现实与先进显示技术工程研究中心, 北京 100081
2.重庆京东方显示技术有限公司, 重庆 400714
3.北京京东方显示技术有限公司, 北京 101520
[ "姜柏齐(1997—),男,云南昆明人,硕士研究生,2019年于北京理工大学获得学士学位,主要从事新型显示与薄膜晶体管方面的研究。E-mail:jiangbaiqi97@ sina.com" ]
[ "喻志农(1968—),男,湖北潜江人,博士,教授,2001年于西安交通大学获得博士学位,主要从事光学及光电子薄膜与器件方面的研究。E-mail:znyu@bit.edu.cn" ]
扫 描 看 全 文
姜柏齐, 刘斌, 刘贤文, 等. 晶态IGZO薄膜晶体管的研究进展[J]. 液晶与显示, 2023,38(8):1031-1046.
JIANG Bai-qi, LIU Bin, LIU Xian-wen, et al. Research progress on crystalline IGZO thin film transistor[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1031-1046.
姜柏齐, 刘斌, 刘贤文, 等. 晶态IGZO薄膜晶体管的研究进展[J]. 液晶与显示, 2023,38(8):1031-1046. DOI: 10.37188/CJLCD.2023-0121.
JIANG Bai-qi, LIU Bin, LIU Xian-wen, et al. Research progress on crystalline IGZO thin film transistor[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1031-1046. DOI: 10.37188/CJLCD.2023-0121.
随着显示技术的不断发展,对高性能、高稳定性的薄膜晶体管(Thin Film Transistor,TFT)的需求日趋增加,通过结晶改善薄膜晶体管性能的方法受到大量关注。当前,铟镓锌氧化物(IGZO)材料由于具有迁移率高、柔性好、透明度高等优势,被广泛用于薄膜晶体管的沟道中,而改善IGZO沟道层的结晶形态也成为研究热点。本文总结了晶态IGZO薄膜晶体管器件的研究进展,详细介绍了IGZO系化合物的晶体结构,重点阐述了单晶、,c,轴取向结晶、六方多晶型、尖晶石型、纳米晶型和原生结晶型IGZO的结构和各晶态IGZO薄膜晶体管的制备方法、器件性能和稳定性,深入分析其微观结构,总结物理特性,阐述不同晶系结构的结晶机理,建立不同晶体结构与电学特性的关系,最后对晶态IGZO薄膜晶体管的发展进行展望。
With the development of display technology, the demand for high-performance and high-stability thin film transistors (TFTs) is increasing. The method of improving the performance of thin film transistors through crystallization has received a lot of attention. Currently, indium gallium zinc oxide (IGZO) materials are widely used in the channels of thin film transistors due to their advantages such as high mobility, flexibility, and high transparency. Improving the crystalline morphology of the IGZO channel layer has become a research hotspot. This article summarizes the research progress of crystalline IGZO thin film transistor devices, introduces in detail the crystal structure of IGZO compounds, and focuses on the structure of single crystalline, ,c,-axis-aligned crystalline, hexagonal polycrystalline, spinel, nanocrystalline, and protocrystalline IGZO, as well as the preparation methods, device performance, and stability of various crystalline IGZO thin-film transistors. We also analyze the microstructure of crystalline IGZO, summarize the physical properties, describe the crystallization mechanism and establish the relationship between crystal structure and electrical properties. At last, the development of crystalline IGZO thin film transistor is prospected.
晶态IGZO薄膜薄膜晶体管晶体结构研究进展
crystalline IGZO filmthin film transistorcrystal structureresearch progress
PETTI L, MÜNZENRIEDER N, VOGT C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics [J]. Applied Physics Reviews, 2016, 3(2): 021303. doi: 10.1063/1.4953034http://dx.doi.org/10.1063/1.4953034
WOODS-ROBINSON R, HAN Y B, ZHANG H Y, et al. Wide band gap chalcogenide semiconductors [J]. Chemical Reviews, 2020, 120(9): 4007-4055. doi: 10.1021/acs.chemrev.9b00600http://dx.doi.org/10.1021/acs.chemrev.9b00600
CANTARELLA G, VOGT C, HOPF R, et al. Buckled thin-film transistors and circuits on soft elastomers for stretchable electronics [J]. ACS Applied Materials & Interfaces, 2017, 9(34): 28750-28757. doi: 10.1021/acsami.7b08153http://dx.doi.org/10.1021/acsami.7b08153
LI X Y, CHENG J, GAO Y F, et al. Impact of NH3 plasma treatment for solution-processed indium oxide thin-film transistors with low thermal budget [J]. Journal of Alloys and Compounds, 2020, 817: 152720. doi: 10.1016/j.jallcom.2019.152720http://dx.doi.org/10.1016/j.jallcom.2019.152720
CHENG J, LI X Y, GUO J, et al. The role of the sequence of plasma treatment and high temperature annealing on solution-processed a-IMZO thin film transistor [J]. Journal of Alloys and Compounds, 2019, 793: 369-374. doi: 10.1016/j.jallcom.2019.04.115http://dx.doi.org/10.1016/j.jallcom.2019.04.115
CHENG J, YU Z N, LI X Y, et al. The effects of N2O plasma treatment on the device performance of solution-processed a-InMgZnO thin-film transistors [J]. IEEE Transactions on Electron Devices, 2018, 65(1): 136-141. doi: 10.1109/ted.2017.2775637http://dx.doi.org/10.1109/ted.2017.2775637
KIM D G, LEE T K, PARK K S, et al. Hydrogen behavior under X-ray irradiation for a-IGZO thin film transistors [J]. Applied Physics Letters, 2020, 116(1): 013502. doi: 10.1063/1.5132372http://dx.doi.org/10.1063/1.5132372
冯国锋,章雯,董承远.环境湿度对非晶铟镓锌氧薄膜晶体管负偏压光照稳定性的影响[J].液晶与显示,2021,36(5):649-655. doi: 10.37188/CJLCD.2020-0305http://dx.doi.org/10.37188/CJLCD.2020-0305
FENG G F, ZHANG W, DONG C Y. Influence of ambient humidity on the stability of negative bias illumination for amorphous indium gallium zinc oxide thin film transistors [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 649-655. (in Chinese). doi: 10.37188/CJLCD.2020-0305http://dx.doi.org/10.37188/CJLCD.2020-0305
PARK J S, MAENG W J, KIM H S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices [J]. Thin Solid Films, 2012, 520(6): 1679-1693. doi: 10.1016/j.tsf.2011.07.018http://dx.doi.org/10.1016/j.tsf.2011.07.018
YU X G, MARKS T J, FACCHETTI A. Metal oxides for optoelectronic applications [J]. Nature Materials, 2016, 15(4): 383-396. doi: 10.1038/nmat4599http://dx.doi.org/10.1038/nmat4599
KAMIYA T, NOMURA K, HOSONO H. Present status of amorphous In-Ga-Zn-O thin-film transistors [J]. Science and Technology of Advanced Materials, 2010, 11(4): 044305. doi: 10.1088/1468-6996/11/4/044305http://dx.doi.org/10.1088/1468-6996/11/4/044305
AGRAWAL K S, PATIL V S, CHO E C, et al. Analysis of negative bias illumination stress induced effect on LTPS and a-IGZO TFT [J]. ECS Journal of Solid State Science and Technology, 2020, 9(10): 106005. doi: 10.1149/2162-8777/abc6f0http://dx.doi.org/10.1149/2162-8777/abc6f0
HAN K L, HAN J H, KIM B S, et al. Organic/inorganic hybrid buffer in InGaZnO transistors under repetitive bending stress for high electrical and mechanical stability [J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3784-3791. doi: 10.1021/acsami.9b21531http://dx.doi.org/10.1021/acsami.9b21531
WANG X, SHEN Z H, LI J, et al. Preparation and properties of crystalline IGZO thin films [J]. Membranes, 2021, 11(2): 134. doi: 10.3390/membranes11020134http://dx.doi.org/10.3390/membranes11020134
NOMURA K, OHTA H, UEDA K, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor [J]. Science, 2003, 300(5623): 1269-1272. doi: 10.1126/science.1083212http://dx.doi.org/10.1126/science.1083212
KIMIZUKA N, SpinelMOHRI T., YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3-A2O3-BO systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1 000 ℃ [J]. Journal of Solid State Chemistry, 1985, 60(3): 382-384.
NESPOLO M, SATO A, OSAWA T, et al. Synthesis, crystal structure and charge distribution of InGaZnO4. X-ray diffraction study of 20kb single crystal and 50 kb twin by reticular merohedry [J]. Crystal Research and Technology, 2000, 35(2): 151-165. doi: 10.1002/(sici)1521-4079(200002)35:2<151::aid-crat151>3.0.co;2-0http://dx.doi.org/10.1002/(sici)1521-4079(200002)35:2<151::aid-crat151>3.0.co;2-0
KIMIZUKA N, YAMAZAKI S. Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Fundamentals [M]. Hoboken: John Wiley & Sons, Ltd., 2016. doi: 10.1002/9781119247289http://dx.doi.org/10.1002/9781119247289
KASE N, KIMIZUKA N, MIYAKAWA N. Recent progress of the single crystal growth of homologous (InGaO3)m (ZnO)n [J]. Cryst. Eng. Comm., 2022, 24(25): 4481-4495. doi: 10.1039/d2ce00439ahttp://dx.doi.org/10.1039/d2ce00439a
NOMURA K, KAMIYA T, OHTA H, et al. Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films [J]. Applied Physics Letters, 2004, 85(11): 1993-1995. doi: 10.1063/1.1788897http://dx.doi.org/10.1063/1.1788897
OHTA H, NOMURA K, ORITA M, et al. Single-crystalline films of the homologous series InGaO3(ZnO)m grown by reactive solid-phase epitaxy [J]. Advanced Functional Materials, 2003, 13(2): 139-144. doi: 10.1002/adfm.200390020http://dx.doi.org/10.1002/adfm.200390020
YAMADA Y, MATSUBAYASHI D, MATSUDA S, et al. Single crystalline In-Ga-Zn oxide films grown from c-axis aligned crystalline materials and their transistor characteristics [J]. Japanese Journal of Applied Physics, 2014, 53(9): 091102. doi: 10.7567/jjap.53.091102http://dx.doi.org/10.7567/jjap.53.091102
GUO Y J, BILZEN B V, LOCQUET J P, et al. Formation of crystalline InGaO3(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor [J]. Nanotechnology, 2015, 26(49): 495601. doi: 10.1088/0957-4484/26/49/495601http://dx.doi.org/10.1088/0957-4484/26/49/495601
YAMAZAKI S, SUZAWA H, INOUE K, et al. Properties of crystalline In-Ga-Zn-oxide semiconductor and its transistor characteristics [J]. Japanese Journal of Applied Physics, 2014, 53(4S): 04ED18. doi: 10.7567/jjap.53.04ed18http://dx.doi.org/10.7567/jjap.53.04ed18
YAMAZAKI S, KOYAMA J, YAMAMOTO Y, et al. Research, development, and application of crystalline oxide semiconductor [J]. SID Symposium Digest of Technical Papers, 2012, 43(1): 183-186. doi: 10.1002/j.2168-0159.2012.tb05742.xhttp://dx.doi.org/10.1002/j.2168-0159.2012.tb05742.x
LYNCH D M, ZHU B, LEVIN B D A, et al. Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO4 [J]. Applied Physics Letters, 2014, 105(26): 262103. doi: 10.1063/1.4905208http://dx.doi.org/10.1063/1.4905208
HSU H H, YEN S S, CHIU Y C, et al. Correlation of thermal annealing effect, crystallinity and electrical characteristics in c-axis crystallized InGaZnO thin-film transistors [J]. Journal of Alloys and Compounds, 2015, 643 Suppl 1: S187-S192. doi: 10.1016/j.jallcom.2014.12.207http://dx.doi.org/10.1016/j.jallcom.2014.12.207
ZHU B, ROACH K E, LYNCH D M, et al. Effects of RF sputtering parameters on C-axis aligned crystalline (CAAC) InGaZnO4 films using design of experiment (DOE) approach [J]. ECS Journal of Solid State Science and Technology, 2016, 5(6): 368-375. doi: 10.1149/2.0361606jsshttp://dx.doi.org/10.1149/2.0361606jss
ZHANG J P, WEN X Z, HU L Y, et al. C-axis oriented crystalline IGZO thin-film transistors by magnetron sputtering [J]. Journal of Materials Chemistry C, 2017, 5(9): 2388-2396. doi: 10.1039/c7tc00193bhttp://dx.doi.org/10.1039/c7tc00193b
CONLEY J F. Instabilities in amorphous oxide semiconductor thin-film transistors [J]. IEEE Transactions on Device and Materials Reliability, 2010, 10(4): 460-475. doi: 10.1109/tdmr.2010.2069561http://dx.doi.org/10.1109/tdmr.2010.2069561
JEONG S W, LEE J T, ROH Y. Effects of controlling the interface trap densities in InGaZnO thin-film transistors on their threshold voltage shifts [J]. Journal of the Korean Physical Society, 2014, 65(11): 1919-1924. doi: 10.3938/jkps.65.1919http://dx.doi.org/10.3938/jkps.65.1919
HAN C H, KIM S S, KIM K R, et al. Effects of electron trapping and interface state generation on bias stress induced in indium-gallium-zinc oxide thin-film transistors [J]. Japanese Journal of Applied Physics, 2014, 53(8S3): 08NG04. doi: 10.7567/jjap.53.08ng04http://dx.doi.org/10.7567/jjap.53.08ng04
KANG Y, LEE W, KIM J, et al. Effects of crystalline structure of IGZO thin films on the electrical and photo-stability of metal-oxide thin-film transistors [J]. Materials Research Bulletin, 2021, 139: 111252. doi: 10.1016/j.materresbull.2021.111252http://dx.doi.org/10.1016/j.materresbull.2021.111252
TSUBUKU M, WATANABE R, ISHIHARA N, et al. Negative-bias photodegradation mechanism in InGaZnO TFT [J]. SID Symposium Digest of Technical Papers, 2013, 44(1): 166-169. doi: 10.1002/j.2168-0159.2013.tb06169.xhttp://dx.doi.org/10.1002/j.2168-0159.2013.tb06169.x
KANG Y, NAHM H H, HAN S. Light-induced peroxide formation in ZnO: origin of persistent photoconductivity [J]. Scientific Reports, 2016, 6: 35148. doi: 10.1038/srep35148http://dx.doi.org/10.1038/srep35148
JANG J T, PARK J, AHN B D, et al. Study on the photoresponse of amorphous In-Ga-Zn-O and zinc oxynitride semiconductor devices by the extraction of sub-gap-state distribution and device simulation [J]. ACS applied Materials & Interfaces, 2015, 7(28): 15570-15577. doi: 10.1021/acsami.5b04152http://dx.doi.org/10.1021/acsami.5b04152
AHN S E, SONG I, JEON S, et al. Metal oxide thin film phototransistor for remote touch interactive displays [J]. Advanced Materials, 2012, 24(19): 2631-2636. doi: 10.1002/adma.201200293http://dx.doi.org/10.1002/adma.201200293
王祖敏,张安,陈媛媛,等.金属诱导晶化基础与应用研究进展[J].金属学报,2019,56(1):66-82.
WANG Z M, ZHANG A, CHEN Y Y, et al. Research progress on fundamentals and applications of metal-induced crystallization [J]. Acta Metallurgica Sinica, 2020, 56(1): 66-82. (in Chinese)
王光伟,张建民,倪晓昌,等.非晶硅和非晶硅锗薄膜的金属诱导结晶[J].液晶与显示,2009,24(3):356-366. doi: 10.3969/j.issn.1007-2780.2009.03.007http://dx.doi.org/10.3969/j.issn.1007-2780.2009.03.007
WANG G W, ZHANG J M, NI X C, et al. Metal-induced crystallization of amorphous silicon and silicon germanium films [J]. Chinese Journal of Liquid Crystals and Displays, 2009, 24(3): 356-366. (in Chinese). doi: 10.3969/j.issn.1007-2780.2009.03.007http://dx.doi.org/10.3969/j.issn.1007-2780.2009.03.007
LERMUSIAUX L, MAZEL A, CARRETERO-GENEVRIER A, et al. Metal-induced crystallization in metal oxides [J]. Accounts of Chemical Research, 2022, 55(2): 171-185. doi: 10.1021/acs.accounts.1c00592http://dx.doi.org/10.1021/acs.accounts.1c00592
HWANG A Y, KIM S T, JI H, et al. Metal-induced crystallization of amorphous zinc tin oxide semiconductors for high mobility thin-film transistors [J]. Applied Physics Letters, 2016, 108(15): 152111. doi: 10.1063/1.4947063http://dx.doi.org/10.1063/1.4947063
SHIN Y, KIM S T, KIM K, et al. The mobility enhancement of indium gallium zinc oxide transistors via low-temperature crystallization using a tantalum catalytic layer [J]. Scientific Reports, 2017, 7(1): 10885. doi: 10.1038/s41598-017-11461-0http://dx.doi.org/10.1038/s41598-017-11461-0
KIM T, KIM M J, LEE J, et al. Boosting carrier mobility in zinc oxynitride thin-film transistors via tantalum oxide encapsulation [J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22501-22509. doi: 10.1021/acsami.9b03865http://dx.doi.org/10.1021/acsami.9b03865
LEE S H, LEE S, JANG S C, et al. Mobility enhancement of indium-gallium oxide via oxygen diffusion induced by a metal catalytic layer [J]. Journal of Alloys and Compounds, 2021, 862: 158009. doi: 10.1016/j.jallcom.2020.158009http://dx.doi.org/10.1016/j.jallcom.2020.158009
JEONG S, JANG S, HAN H, et al. C-axis aligned crystalline indium-gallium-zinc oxide (CAAC-IGZO) and high-k charge trapping film for flash memory application [J]. Journal of Alloys and Compounds, 2021, 888: 161440. doi: 10.1016/j.jallcom.2021.161440http://dx.doi.org/10.1016/j.jallcom.2021.161440
KATO K, KOBAYASHI H, SHISHIDO H, et al. 5,291-ppi OLED display enabled by monolithic integration of C-axis-aligned crystalline IGZO FET and Si CMOS [J]. Journal of the Society for Information Display, 2022, 30(9): 690-698. doi: 10.1002/jsid.1167http://dx.doi.org/10.1002/jsid.1167
ATSUMI T, NAGATSUKA S, INOUE H, et al. DRAM using crystalline oxide semiconductor for access transistors and not requiring refresh for more than ten days [C]//Proceedings of the Fourth International Conference on IEEE International Memory Workshop. Milan, Italy: IEEE, 2012: 1-4. doi: 10.1109/imw.2012.6213660http://dx.doi.org/10.1109/imw.2012.6213660
TAMURA H, KATO K, ISHIZU T, et al. Embedded SRAM and cortex-M0 core using a 60-nm crystalline oxide semiconductor [J]. IEEE Micro, 2014, 34(6): 42-53. doi: 10.1109/mm.2014.96http://dx.doi.org/10.1109/mm.2014.96
YAMAZAKI S, TSUTSUI T. Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Application to Displays [M]. Chichester: John Wiley & Sons, Ltd., 2017. doi: 10.1002/9781119247395http://dx.doi.org/10.1002/9781119247395
NAKATA M, TAKECHI K, AZUMA K, et al. Improvement of InGaZnO4 thin film transistors characteristics utilizing excimer laser annealing [J]. Applied Physics Express, 2009, 2(2): 021102. doi: 10.1143/apex.2.021102http://dx.doi.org/10.1143/apex.2.021102
PARK K, PARK H W, SHIN H S, et al. Reliability of crystalline indium-gallium-zinc-oxide thin-film transistors under bias stress with light illumination [J]. IEEE Transactions on Electron Devices, 2015, 62(9): 2900-2905. doi: 10.1109/ted.2015.2458987http://dx.doi.org/10.1109/ted.2015.2458987
YAMAZAKI S, SUZAWA H, INOUE K, et al. Properties of crystalline In-Ga-Zn-oxide semiconductor and its transistor characteristics [J]. Japanese Journal of Applied Physics, 2014, 53(4S): 04ED18. doi: 10.7567/jjap.53.04ed18http://dx.doi.org/10.7567/jjap.53.04ed18
PHAM A T T, LUU T A, PHAM N K, et al. Multi-scale defects in ZnO thermoelectric ceramic materials co-doped with In and Ga [J]. Ceramics International, 2020, 46(8): 10748-10758. doi: 10.1016/j.ceramint.2020.01.084http://dx.doi.org/10.1016/j.ceramint.2020.01.084
VAN SETTEN M J, DEKKERS H F W, KLJUCAR L, et al. Oxygen defect stability in amorphous, C-axis aligned, and spinel IGZO [J]. ACS Applied Electronic Materials, 2021, 3(9): 4037-4046. doi: 10.1021/acsaelm.1c00553http://dx.doi.org/10.1021/acsaelm.1c00553
DEKKERS H F W, VAN SETTEN M J, BELMONTE A, et al. Deposition, characterization, and performance of spinel InGaZnO4 [J]. ACS Applied Electronic Materials, 2022, 4(3): 1238-1249. doi: 10.1021/acsaelm.1c01315http://dx.doi.org/10.1021/acsaelm.1c01315
SHIMOMURA A, KOYAMA M, ISHIYAMA T, et al. Crystallography of excimer laser-crystallized In-Ga-Zn-O film [C]. Twentieth International Workshop on Active-matrix Flatpanel Displays & Devices. Kyoto: IEEE, 2013: 155-158.
GLUSHKOVA A V, DEKKERS H F W, NAG M, et al. Systematic study on the amorphous, C-axis-aligned crystalline, and protocrystalline phases in In-Ga-Zn oxide thin-film transistors [J]. ACS Applied Electronic Materials, 2021, 3(3): 1268-1278. doi: 10.1021/acsaelm.0c01091http://dx.doi.org/10.1021/acsaelm.0c01091
WASEDA Y, SUGIYAMA K, KAWAMATA T. Nanometer-sized crystalline clusters of IGZO films determined from the grazing incidence X-ray scattering and anomalous X-ray scattering data combined with reverse Monte Carlo simulations [J]. Materials Transactions, 2018, 59(11): 1691-1700. doi: 10.2320/matertrans.m2018231http://dx.doi.org/10.2320/matertrans.m2018231
SORIDA N, TAKAHASHI M, DAIRIKI K, et al. Nanometer-scale crystallinity in In-Ga-Zn-oxide thin film deposited at room temperature observed by nanobeam electron diffraction [J]. Japanese Journal of Applied Physics, 2014, 53(11): 115501. doi: 10.7567/jjap.53.115501http://dx.doi.org/10.7567/jjap.53.115501
OBONAI T, OKAZAKI K, HOSAKA Y, et al. Relation between crystallinity and constituent distribution of an IGZO thin film [J]. Japanese Journal of Applied Physics, 2019, 58(9): 091003. doi: 10.7567/1347-4065/ab34fdhttp://dx.doi.org/10.7567/1347-4065/ab34fd
ISHIKAWA Y, SCHUBERT M B. Flexible protocrystalline silicon solar cells with amorphous buffer layer [J]. Japanese Journal of Applied Physics, 2006, 45(9A): 6812-6822. doi: 10.1143/jjap.45.6812http://dx.doi.org/10.1143/jjap.45.6812
KOH J, LEE Y, FUJIWARA H, et al. Optimization of hydrogenated amorphous silicon p-i-n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry [J]. Applied Physics Letters, 1998, 73(11): 1526-1528. doi: 10.1063/1.122194http://dx.doi.org/10.1063/1.122194
WRONSKI C R, WYRSCH N. Silicon Solar Cells Silicon Solar Cell, Thin-Film Silicon Solar Cell Thin-Film [M]. New York: Springer, 2012. doi: 10.1007/978-1-4614-5806-7_462http://dx.doi.org/10.1007/978-1-4614-5806-7_462
0
浏览量
163
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构