Real-time automatic image cropping based on portrait detection
Image Processing|更新时间:2023-05-09
|
Real-time automatic image cropping based on portrait detection
Chinese Journal of Liquid Crystals and DisplaysVol. 38, Issue 5, Pages: 617-624(2023)
作者机构:
1.福州大学 先进制造学院, 福建 泉州 362200
2.福州大学 物理与信息工程学院, 福建 福州 350116
3.中国福建光电信息科学与技术实验室, 福建 福州 350116
作者简介:
基金信息:
National Key R&D Program of China(2021YFB3600603);Projects supported by Natural Science Foundation of Fujian Province(2020J01468);Youth Science Foundation of the National Natural Science Foundation of China(62101132)
WU Yu-hang, LIN Shan-ling, LIN Zhi-xian, et al. Real-time automatic image cropping based on portrait detection. [J]. Chinese Journal of Liquid Crystals and Displays 38(5):617-624(2023)
DOI:
WU Yu-hang, LIN Shan-ling, LIN Zhi-xian, et al. Real-time automatic image cropping based on portrait detection. [J]. Chinese Journal of Liquid Crystals and Displays 38(5):617-624(2023) DOI: 10.37188/CJLCD.2022-0258.
Real-time automatic image cropping based on portrait detection
In order to solve the problem that the existing automatic image cropping algorithm mistakenly cuts off the whole person or part of the body parts of the main figure, which leads to the missing of the key information of the image and the poor composition of the image, this paper proposes a real-time automatic image cropping method based on portrait detection. This method divides image cropping into two stages: portrait detection and intelligent composition. It aims to take the extracted portrait coordinate information as the input of the intelligent cropping algorithm, and then combines the composition rule based on aesthetics to automatically compose the picture, so as to ensure the integrity of the portrait information in the cropping result and improve the composition beauty of the picture. The experimental results show that the lightweight detection network modified on the basis of Center-Net in this paper reduces the computation amount by 86% and improves the accuracy by 3.34%, which is convenient to apply the cropping algorithm to mobile devices. The FPS of the whole cropping algorithm reaches 77, and the cropped portrait information is complete, and the overall composition of the picture is improved.
SANTELLA A, AGRAWALA M, DECARLO D, et al. Gaze-based interaction for semi-automatic photo cropping [C]//Proceedings of SIGCHI Conference on Human Factors in Computing Systems. Montréal: ACM, 2006: 771-780. doi: 10.1145/1124772.1124886http://dx.doi.org/10.1145/1124772.1124886
STENTIFORD F. Attention based auto image cropping [C]//Proceedings of the 5th International Conference on Computer Vision Systems. Germany: Applied Computer Science Group, Bielefeld University, 2007: 140-148. doi: 10.1109/icip.2006.312482http://dx.doi.org/10.1109/icip.2006.312482
KAO Y Y, WANG C, HUANG K Q. Visual aesthetic quality assessment with a regression model [C]//Proceedings of 2015 IEEE International Conference on Image Processing. Quebec City: IEEE, 2015: 1583-1587. doi: 10.1109/icip.2015.7351067http://dx.doi.org/10.1109/icip.2015.7351067
LU X, LIN Z, JIN H L, et al. RAPID: rating pictorial aesthetics using deep learning [C]//Proceedings of the 22nd ACM International Conference on Multimedia. Orlando: ACM, 2014: 457-466. doi: 10.1145/2647868.2654927http://dx.doi.org/10.1145/2647868.2654927
LI D B, WU H K, ZHANG J G, et al. A2-RL: aesthetics aware reinforcement learning for image cropping [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8193-8201. doi: 10.1109/cvpr.2018.00855http://dx.doi.org/10.1109/cvpr.2018.00855
CHEN Y L, KLOPP J, SUN M, et al. Learning to compose with professional photographs on the web [C]//Proceedings of the 25th ACM International Conference on Multimedia. Mountain: ACM, 2017: 37-45. doi: 10.1145/3123266.3123274http://dx.doi.org/10.1145/3123266.3123274
WEI Z J, ZHANG J M, SHEN X H, et al. Good view hunting: learning photo composition from dense view pairs [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5437-5446. doi: 10.1109/cvpr.2018.00570http://dx.doi.org/10.1109/cvpr.2018.00570
YAN B, FAN P, LEI X Y, et al. A real-time apple targets detection method for picking robot based on improved YOLOv5 [J]. Remote Sensing, 2021, 13(9): 1619. doi: 10.3390/rs13091619http://dx.doi.org/10.3390/rs13091619
DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection [C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6568-6577. doi: 10.1109/iccv.2019.00667http://dx.doi.org/10.1109/iccv.2019.00667
XU Z H, YUAN X Y, ZHOU T K, et al. A multichannel optical computing architecture for advanced machine vision [J]. Light: Science & Applications, 2022, 11(1): 255. doi: 10.1038/s41377-022-00945-yhttp://dx.doi.org/10.1038/s41377-022-00945-y
WANG J L, FU X S, HUANG Z C, et al. Multi-type cooperative targets detection using improved YOLOv2 convolutional neural network [J]. Optics and Precision Engineering, 2020, 28(1): 251-260. (in Chinese). doi: 10.3788/ope.20202801.0251http://dx.doi.org/10.3788/ope.20202801.0251
SANDLER M, HOWARD A, ZHU M L, et al. MobilenetV2: inverted residuals and linear bottlenecks [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520. doi: 10.1109/cvpr.2018.00474http://dx.doi.org/10.1109/cvpr.2018.00474