1.上海应用技术大学 理学院, 上海 201418
2.浙江安贝新材料股份有限公司, 浙江 湖州 313000
3.宁波朗格照明电器有限公司, 浙江 宁波 315000
4.广东皇智照明科技有限公司, 广东 中山 528400
5.惠创科技(台州)有限公司, 浙江 台州 318000
6.浙江绿龙新材料有限公司, 浙江 海宁 314419
7.西双版纳承启科技有限公司, 云南 西双版纳 666100
[ "王麒(1999—),男,四川巴中人,硕士研究生,2022年于上海应用技术大学获得学士学位,主要从事光电材料制备和钙钛矿量子点的研究。E-mail:226181128@mail.sit.edu.cn" ]
[ "杨波波(1990—),男,湖南岳阳人,博士,讲师,2021年于复旦大学获得博士学位,主要从事光电材料制备和器件封装方面的研究。E-mail:boboyang@sit. edu.cn" ]
[ "邹军(1978—),男,湖北襄阳人,博士,教授,2007年于中国科学院上海光学精密机械研究所获得博士学位,主要从事半导体封测与工业自动化方面的研究。E-mail:zoujun@sit.edu.cn" ]
扫 描 看 全 文
王麒, 杨波波, 李威晨, 等. Micro-LED器件:从极性c面到非极性或半极性的发展趋势[J]. 液晶与显示, 2023,38(10):1347-1360.
WANG Qi, YANG Bo-bo, LI Wei-chen, et al. Micro-LED devices: the trend from polar c-plane to nonpolar or semipolar[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(10):1347-1360.
王麒, 杨波波, 李威晨, 等. Micro-LED器件:从极性c面到非极性或半极性的发展趋势[J]. 液晶与显示, 2023,38(10):1347-1360. DOI: 10.37188/CJLCD.2023-0205.
WANG Qi, YANG Bo-bo, LI Wei-chen, et al. Micro-LED devices: the trend from polar c-plane to nonpolar or semipolar[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(10):1347-1360. DOI: 10.37188/CJLCD.2023-0205.
氮化镓作为第三代照明器件材料相较于第一代硅与第二代砷化镓在性能上有了很大提高,基于氮化镓的Micro-LED器件也愈发被人们所关注。然而由于在传统c面上生长的LED其自身所固有的一些缺陷往往在实际应用中发射效率不高,如存在量子限制斯塔克效应、绿色间隙、载流子传输等问题。基于非极性或半极性的LED没有极化电场,具有较强的内量子效率,电子和空穴复合机率大等优点,对非极性和半极性Micro-LED器件的研究与应用引起了人们很大的兴趣。本文对非极性和半极性Micro-LED器件研究现状进行综述。首先从量子限制斯托克效应、绿色间隙、载流子传输、效率下降4个方面介绍了非极性和半极性氮化镓基材料的优势。接着针对缺陷位错、增加光提取效率与在不同电流密度下实现全彩显示等问题,介绍了芯片成形、图案刻蚀与阵列这3种技术,最后对Micro-LED作为下一代显示引领者进行了展望。希望对Micro-LED今后的研究有所帮助。
Gallium nitride, as the third generation material of lighting devices has greatly improved, compared with the first generation of silicon and the second generation of gallium arsenide performance. Gallium nitride-based Micro-LED devices are also getting more and more attention. However, the emission efficiency of the traditional c-plane growth of LEDs is not high in practical applications, due to quantum confined stark effect, green gap, carrier transport or other problems. Nonpolar or semipolar LED has the advantages of non-polarized electric field, stronger internal quantum efficiency, and more probability of electron and hole recombination. Therefore, the research and application of nonpolar and semipolar Micro-LED devices have aroused great interest. This paper reviews the research status of nonpolar and semipolar Micro-LED devices. Firstly, the advantages of nonpolar and semipolar gallium nitride materials are introduced from four aspects: quantum confined Stark effect, green gap, carrier transport and efficiency droop. Then, three technologies of chip shaping, pattern etching and array are introduced for solving the problems of defect dislocation, low efficiency of optical extraction and realizing full color display under different current density. Finally, the prospect of Micro-LED as the next generation display leader is given. It is hoped that it will be helpful in the next research for Micro-LED.
氮化镓Micro-LED非极性半极性
gallium nitrideMicro-LEDnonpolarsemipolar
迭俊珲. 非极性a面GaN材料外延的成核过程及选区生长研究[D]. 北京:中国科学院大学,2019.
DIE J H. Study on the nucleation process and selective growth of non-polar a-plane GaN film [D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese)
PANKOVE J I, SCHADE H. Photoemission from GaN [J]. Applied Physics Letters, 1974, 25(1): 53-55. doi: 10.1063/1.1655276http://dx.doi.org/10.1063/1.1655276
WALTEREIT P, BRANDT O, TRAMPERT A, et al. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes [J]. Nature, 2000, 406(6798): 865-868. doi: 10.1038/35022529http://dx.doi.org/10.1038/35022529
ZOU J, DONG Y M, ZHOU S M, et al. Study on the hydrolytic property and thermal stability of LiAlO2 substrate [J]. Journal of Crystal Growth, 2006, 294(2): 339-342. doi: 10.1016/j.jcrysgro.2006.06.025http://dx.doi.org/10.1016/j.jcrysgro.2006.06.025
PARBROOK P J, CORBETT B, HAN J, et al. Micro‐light emitting diode: from chips to applications [J]. Laser & Photonics Reviews, 2021, 15(5): 2000133. doi: 10.1002/lpor.202000133http://dx.doi.org/10.1002/lpor.202000133
JIANG H X, JIN S X, LI J, et al. III-nitride blue microdisplays [J]. Applied Physics Letters, 2001, 78(9): 1303-1305. doi: 10.1063/1.1351521http://dx.doi.org/10.1063/1.1351521
LU S Q, LI J C, HUANG K, et al. Designs of InGaN micro-LED structure for improving quantum efficiency at low current density [J]. Nanoscale Research Letters, 2021, 16(1): 99. doi: 10.1186/s11671-021-03557-4http://dx.doi.org/10.1186/s11671-021-03557-4
Micro-LED market by application (display (smartwatch, nte device, smartphone and tablet, television, digital signage), lighting (general, automotive)), display panel size, vertical and region 2027 [EB/OL]. (2023-01-19). https://www.marketsandmarkets.com/Market-Reports/micro-led-market-119830236.htmlhttps://www.marketsandmarkets.com/Market-Reports/micro-led-market-119830236.html.
DÉVELOPPEMENT Y. MicroLED displays could disrupt LCD and OLED [J]. Press Release, February, 2017. http://www.yole.fr/MicroLEDDisplays_Market.aspx#.X9xB6kYzaUnhttp://www.yole.fr/MicroLEDDisplays_Market.aspx#.X9xB6kYzaUn.
WU Y R, HUANG C Y, ZHAO Y J, et al. Nonpolar and semipolar LEDs [M]//HUANG J, KUO H C, SHEN S C. Nitride Semiconductor Light-Emitting Diodes (LEDs). Cambridge: Woodhead Publishing, 2018: 273-295. doi: 10.1016/b978-0-08-101942-9.00008-3http://dx.doi.org/10.1016/b978-0-08-101942-9.00008-3
王学炜. N极性和非极性GaN衬底上的氮化物外延生长方法及特性研究[D]. 西安:西安电子科技大学,2020.
WANG X W. Method and characteristic of nitride epitaxial growth on N-polar and nonpolar GaN substrates [D]. Xi'an: Xidian University, 2020.(in Chinese)
NARUKAWA Y, ICHIKAWA M, SANGA D, et al. White light emitting diodes with super-high luminous efficacy [J]. Journal of Physics D: Applied Physics, 2010, 43(35): 354002. doi: 10.1088/0022-3727/43/35/354002http://dx.doi.org/10.1088/0022-3727/43/35/354002
KRAMES M R, SHCHEKIN O B, MUELLER-MACH R, et al. Status and future of high-power light-emitting diodes for solid-state lighting [J]. Journal of Display Technology, 2007, 3(2): 160-175. doi: 10.1109/jdt.2007.895339http://dx.doi.org/10.1109/jdt.2007.895339
HOUGHTON D C, DAVIES M, DION M. Design criteria for structurally stable, highly strained multiple quantum well devices [J]. Applied Physics Letters, 1994, 64(4): 505-507. doi: 10.1063/1.111111http://dx.doi.org/10.1063/1.111111
OH M S, KWON M K, PARK I K, et al. Improvement of green LED by growing p-GaN on In0.25 GaN/GaN MQWs at low temperature [J]. Journal of Crystal Growth, 2006, 289(1): 107-112. doi: 10.1016/j.jcrysgro.2005.10.129http://dx.doi.org/10.1016/j.jcrysgro.2005.10.129
DAVID A, GRUNDMANN M J, KAEDING J F, et al. Carrier distribution in (0001) InGaN∕GaN multiple quantum well light-emitting diodes [J]. Applied Physics Letters, 2008, 92(5): 053502. doi: 10.1063/1.2839305http://dx.doi.org/10.1063/1.2839305
GALLER B, LAUBSCH A, WOJCIK A, et al. Investigation of the carrier distribution in InGaN‐based multi‐quantum‐well structures [J]. Physica Status Solidi C, 2011, 8(7/8): 2372-2374. doi: 10.1002/pssc.201001075http://dx.doi.org/10.1002/pssc.201001075
HAN S H, LEE D Y, LEE S J, et al. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes [J]. Applied Physics Letters, 2009, 94(23): 231123. doi: 10.1063/1.3153508http://dx.doi.org/10.1063/1.3153508
SCHUBERT M F, SCHUBERT E F. Effect of heterointerface polarization charges and well width upon capture and dwell time for electrons and holes above GaInN/GaN quantum wells [J]. Applied Physics Letters, 2010, 96(13): 131102. doi: 10.1063/1.3373610http://dx.doi.org/10.1063/1.3373610
SIZOV D S, BHAT R, ZAKHARIAN A, et al. Carrier transport in InGaN MQWs of aquamarine-and green-laser diodes [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1390-1401. doi: 10.1109/jstqe.2011.2116770http://dx.doi.org/10.1109/jstqe.2011.2116770
XIE J Q, NI X F, FAN Q, et al. On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers [J]. Applied Physics Letters, 2008, 93(12): 121107. doi: 10.1063/1.2988324http://dx.doi.org/10.1063/1.2988324
KUO Y K, CHANG J Y, TSAI M C, et al. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers [J]. Applied Physics Letters, 2009, 95(1): 011116. doi: 10.1063/1.3176406http://dx.doi.org/10.1063/1.3176406
SHENG X C, SIMON L Z M, LU W, et al. Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier[J]. Applied Physics Letters, 2011, 99(23):233501. doi: 10.1063/1.3665252http://dx.doi.org/10.1063/1.3665252
KAWAGUCHI Y, HUANG C Y, WU Y R, et al. Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes [J]. Applied Physics Letters, 2012, 100(23): 231110. doi: 10.1063/1.4726106http://dx.doi.org/10.1063/1.4726106
SHEN Y C, MUELLER G O, WATANABE S, et al. Auger recombination in InGaN measured by photoluminescence [J]. Applied Physics Letters, 2007, 91(14): 141101. doi: 10.1063/1.2785135http://dx.doi.org/10.1063/1.2785135
KIOUPAKIS E, RINKE P, DELANEY K T, et al. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes [J]. Applied Physics Letters, 2011, 98(16): 161107. doi: 10.1063/1.3570656http://dx.doi.org/10.1063/1.3570656
GARDNER N F, MÜLLER G O, SHEN Y C, et al. Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2 [J]. Applied Physics Letters, 2007, 91(24): 243506. doi: 10.1063/1.2807272http://dx.doi.org/10.1063/1.2807272
LI Y L, HUANG Y R, LAI Y H. Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness [J]. Applied Physics Letters, 2007, 91(18): 181113. doi: 10.1063/1.2805197http://dx.doi.org/10.1063/1.2805197
SCHUBERT M F, XU J R, KIM J K, et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop [J]. Applied Physics Letters, 2008, 93(4): 041102. doi: 10.1063/1.2963029http://dx.doi.org/10.1063/1.2963029
NI X, LI X, LEE J, et al. InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes [J]. Applied Physics Letters, 2010, 97(3): 031110. doi: 10.1063/1.3465658http://dx.doi.org/10.1063/1.3465658
WANG C H, CHANG S P, KU P H, et al. Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers [J]. Applied Physics Letters, 2011, 99(17): 171106. doi: 10.1063/1.3655903http://dx.doi.org/10.1063/1.3655903
WU Y R, SHIVARAMAN R, WANG K C, et al. Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure [J]. Applied Physics Letters, 2012, 101(8): 083505. doi: 10.1063/1.4747532http://dx.doi.org/10.1063/1.4747532
李阳. Micro-LED阵列理论及显示技术研究[D]. 长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所),2021.
LI Y. Research on micro-LED array theory and display technology [D]. Changchun: University of Chinese Academy of Sciences, 2021.(in Chinese)
CHEN H W, TAN G J, WU S T. Ambient contrast ratio of LCDs and OLED displays [J]. Optics Express, 2017, 25(26): 33643-33656. doi: 10.1364/oe.25.033643http://dx.doi.org/10.1364/oe.25.033643
MASAOKA K, NISHIDA Y. Metric of color-space coverage for wide-gamut displays [J]. Optics Express, 2015, 23(6): 7802-7808. doi: 10.1364/oe.23.007802http://dx.doi.org/10.1364/oe.23.007802
TAKEDA A, KATAOKA S, SASAKI T, et al. A super‐high image quality multi‐domain vertical alignment LCD by new rubbing‐less technology [J]. SID Symposium Digest of Technical Papers, 1998, 29(1): 1077-1080. doi: 10.1889/1.1833672http://dx.doi.org/10.1889/1.1833672
KURITA T. Moving picture quality improvement for hold‐type AM‐LCDs [J]. SID Symposium Digest of Technical Papers, 2001, 32(1): 986-989. doi: 10.1889/1.1832037http://dx.doi.org/10.1889/1.1832037
PENG F L, CHEN H W, GOU F W, et al. Analytical equation for the motion picture response time of display devices [J]. Journal of Applied Physics, 2017, 121(2): 023108. doi: 10.1063/1.4974006http://dx.doi.org/10.1063/1.4974006
TEMPLIER F. GaN‐based emissive microdisplays: a very promising technology for compact, ultra‐high brightness display systems [J]. Journal of the Society for Information Display, 2016, 24(11): 669-675. doi: 10.1002/jsid.516http://dx.doi.org/10.1002/jsid.516
ZHANG L, OU F, CHONG W C, et al. Monochromatic active matrix micro‐LED micro‐displays with>5 000 dpi pixel density fabricated using monolithic hybrid integration process [J]. SID Symposium Digest of Technical Papers, 2018, 49(S1): 333-336. doi: 10.1002/sdtp.12718http://dx.doi.org/10.1002/sdtp.12718
HUANG Y G, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives [J]. Light: Science & Applications, 2020, 9: 105. doi: 10.1038/s41377-020-0341-9http://dx.doi.org/10.1038/s41377-020-0341-9
DETCHPROHM T, ZHU M W, LI Y F, et al. Green light emitting diodes on a-plane GaN bulk substrates [J]. Applied Physics Letters, 2008, 92(24): 241109. doi: 10.1063/1.2945664http://dx.doi.org/10.1063/1.2945664
FELTIN E, BEAUMONT B, VENNÉGUÈS P, et al. Epitaxial lateral overgrowth of GaN on Si (111) [J]. Journal of Applied Physics, 2003, 93(1): 182-185. doi: 10.1063/1.1516838http://dx.doi.org/10.1063/1.1516838
严珅. 高质量非极性a面GaN异质外延的研究[D]. 北京:中国科学院大学,2020.
YAN S. Study on high-quality non-polar a-plane GaN heteroepitaxial [D]. Beijing: University of Chinese Academy of Sciences, 2020.(in Chinese)
USAMI S, ANDO Y, TANAKA A, et al. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate [J]. Applied Physics Letters, 2018, 112(18): 182106. doi: 10.1063/1.5024704http://dx.doi.org/10.1063/1.5024704
LU W F, GOTO N, MURAKAMI H, et al. Controlled synthesis of nonpolar GaInN/GaN multiple-quantum-shells on GaN nanowires by metal-organic chemical vapour deposition [J]. Applied Surface Science, 2020, 509: 145271. doi: 10.1016/j.apsusc.2020.145271http://dx.doi.org/10.1016/j.apsusc.2020.145271
ZHU T T, DING T, TANG F Z, et al. Self-assembled multilayers of silica nanospheres for defect reduction in non-and semipolar gallium nitride epitaxial layers [J]. Crystal Growth & Design, 2016, 16(2): 1010-1016. doi: 10.1021/acs.cgd.5b01560http://dx.doi.org/10.1021/acs.cgd.5b01560
SONG J, CHOI J, ZHANG C, et al. Elimination of stacking faults in semipolar GaN and light-emitting diodes grown on sapphire [J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33140-33146. doi: 10.1021/acsami.9b11316http://dx.doi.org/10.1021/acsami.9b11316
ZHAO J G, ZHANG X, WU Z L, et al. Reduction in crystalline quality anisotropy and strain for non-polar a-plane GaN epi-layers with Nano-scale island-like SiNx interlayer [J]. Journal of Alloys and Compounds, 2017, 729: 992-996. doi: 10.1016/j.jallcom.2017.09.230http://dx.doi.org/10.1016/j.jallcom.2017.09.230
WONG M S, HWANG D, ALHASSAN A I, et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition [J]. Optics Express, 2018, 26(16): 21324-21331. doi: 10.1364/oe.26.021324http://dx.doi.org/10.1364/oe.26.021324
CHEN S W H, SHEN C C, WU T Z, et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer [J]. Photonics Research, 2019, 7(4): 416-422. doi: 10.1364/prj.7.000416http://dx.doi.org/10.1364/prj.7.000416
WONG M S, LEE C, MYERS D J, et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation [J]. Applied Physics Express, 2019, 12(9): 097004. doi: 10.7567/1882-0786/ab3949http://dx.doi.org/10.7567/1882-0786/ab3949
YANG Y, CAO X A. Removing plasma-induced sidewall damage in GaN-based light-emitting diodes by annealing and wet chemical treatments [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2009, 27(6): 2337-2341. doi: 10.1116/1.3244590http://dx.doi.org/10.1116/1.3244590
SONG J, CHOI J, XIONG K L, et al. Semipolar (2021) GaN and InGaN light-emitting diodes grown on sapphire [J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14088-14092.
KONG B H, JUNG B O, CHO H K, et al. Nonpolar a-GaN epilayers with reduced defect density using patterned r-plane sapphire substrates [J]. Thin Solid Films, 2013, 544: 244-248. doi: 10.1016/j.tsf.2013.03.111http://dx.doi.org/10.1016/j.tsf.2013.03.111
SON J S, HONDA Y, AMANO H. Growth of low-defect-density nonpolar a-plane GaN on r-plane sapphire using pulse NH3 interrupted etching [J]. Optics Express, 2014, 22(3): 3585-3592. doi: 10.1364/oe.22.003585http://dx.doi.org/10.1364/oe.22.003585
JIN S X, LI J Z, LIN J Y, et al. GaN microdisk light emitting diodes [J]. Applied Physics Letters, 2000, 76(5): 631-633. doi: 10.1063/1.125841http://dx.doi.org/10.1063/1.125841
梁静秋,李佳,王维彪. LED阵列的设计和制作工艺研究[J]. 液晶与显示,2006,21(6):604-608. doi: 10.3969/j.issn.1007-2780.2006.06.004http://dx.doi.org/10.3969/j.issn.1007-2780.2006.06.004
LIANG J Q, LI J, WANG W B. Design and fabrication of AlGaInP LED array [J]. Chinese Journal of Liquid Crystals and Displays, 2006, 21(6): 604-608. (in Chinese). doi: 10.3969/j.issn.1007-2780.2006.06.004http://dx.doi.org/10.3969/j.issn.1007-2780.2006.06.004
GONG Z, MASSOUBRE D, XIE E Y, et al. Yellow-green and amber InGaN micro-pixellated light-emitting diode arrays [C]. 2010 23rd Annual Meeting of the IEEE Photonics Society. Denver, CO, USA: IEEE, 2010: 645-646. doi: 10.1109/photonics.2010.5699053http://dx.doi.org/10.1109/photonics.2010.5699053
ZHANG S L, GONG Z, MCKENDRY J J D, et al. CMOS-controlled color-tunable smart display [J]. IEEE Photonics Journal, 2012, 4(5): 1639-1646. doi: 10.1109/jphot.2012.2212181http://dx.doi.org/10.1109/jphot.2012.2212181
XU F F, TAO T, LIU B, et al. High-performance semi-polar InGaN/GaN green micro light-emitting diodes [J]. IEEE Photonics Journal, 2020, 12(1): 2500107. doi: 10.1109/jphot.2019.2962184http://dx.doi.org/10.1109/jphot.2019.2962184
CHEN S W H, HUANG Y M, SINGH K J, et al. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist [J]. Photonics Research, 2020, 8(5): 630-636. doi: 10.1364/prj.388958http://dx.doi.org/10.1364/prj.388958
LIU Z, LIN C H, HYUN B R, et al. Micro-light-emitting diodes with quantum dots in display technology [J]. Light: Science & Applications, 2020, 9(1): 83. doi: 10.1038/s41377-020-0268-1http://dx.doi.org/10.1038/s41377-020-0268-1
HAN H V, LIN H Y, LIN C C, et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology [J]. Optics Express, 2015, 23(25): 32504-32515. doi: 10.1364/oe.23.032504http://dx.doi.org/10.1364/oe.23.032504
WANG C W, JIANG Y, DIE J H, et al. Improved crystal quality of non-polar a-plane GaN epi-layers directly grown on optimized hole-array patterned r-sapphire substrates [J]. CrystEngComm, 2019, 21(17): 2747-2753. doi: 10.1039/c8ce01988fhttp://dx.doi.org/10.1039/c8ce01988f
HONG Y J, LEE C H, YOO J, et al. Emission color-tuned light-emitting diode microarrays of nonpolar InxGa1-xN/GaN multishell nanotube heterostructures [J]. Scientific Reports, 2015, 5(1): 18020. doi: 10.1038/srep18020http://dx.doi.org/10.1038/srep18020
0
浏览量
127
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构