1.北京理工大学 光电学院, 北京 100081
[ "郑传建(2000—),男,贵州安龙人,博士研究生,2021年于北京理工大学获得学士学位,主要从事计算光学成像方面的研究。E-mail:3120225352@ bit.edu.cn" ]
[ "张韶辉(1988—),男,河北邯郸人,博士,长聘副教授,2017年于清华大学获得博士学位,主要从事计算成像、三维测量、激光精密测量等方面的研究。E-mail:zhangshaohui@ bit.edu.cn" ]
[ "郝群(1968—),女,山东淄博人,博士,教授,1998年于清华大学获得博士学位,主要从事计算成像、新型光电成像技术、仿生光电感测技术、抗振干涉测量技术及仪器等方面的研究。E-mail: qhao@bit.edu.cn" ]
扫 描 看 全 文
郑传建, 杨德隆, 张韶辉, 等. 傅里叶叠层显微术的光源位姿校正[J]. 液晶与显示, 2023,38(6):712-729.
ZHENG Chuan-jian, YANG De-long, ZHANG Shao-hui, et al. Pose calibration of light source in Fourier ptychographic microscopy[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(6):712-729.
郑传建, 杨德隆, 张韶辉, 等. 傅里叶叠层显微术的光源位姿校正[J]. 液晶与显示, 2023,38(6):712-729. DOI: 10.37188/CJLCD.2023-0016.
ZHENG Chuan-jian, YANG De-long, ZHANG Shao-hui, et al. Pose calibration of light source in Fourier ptychographic microscopy[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(6):712-729. DOI: 10.37188/CJLCD.2023-0016.
傅里叶叠层显微术(Fourier Ptychographic Microscopy, FPM)通过采集不同照明角度下的一组低分辨率强度图像,并利用合成孔径与相位恢复技术拼接融合,实现了大视场和高分辨率的定量复振幅成像。精确的频谱位置是重构算法的重要先验知识,对获得高质量的重构图像至关重要。因此,校正决定图像频谱位置的照明光源位姿成为了实现鲁棒FPM系统的重要工作。近年来,多种校正照明光源位姿的方法相继被提出:采用多自由度精密机械平台校准的机械校正法、根据采集图像强度或频谱信息的数据驱动校正法及基于显微镜光学原理的成像机制校正法。本文简要介绍了FPM的基本原理和光源的位姿偏差,对3类校正方法的原理和特点进行了综述。机械校正法可以从源头上消除位姿偏差,但费时费力;数据驱动校正法能够自动校正位姿偏差,但存在校正时间长和校正参数耦合的问题;成像机制校正法不仅校正鲁棒性高,还能够从多种系统误差中分离出准确的位姿参数,是一种极具发展潜力和应用前景的校正方法。
Fourier ptychographic microscopy (FPM) enables wide-field and high-resolution quantitative complex amplitude imaging by stitching low-resolution intensity images captured under angle-varied illuminations via synthetic aperture and phase retrieval techniques. The spectrum position of each captured image is crucial prior knowledge for reconstructing the high-quality image. Therefore, calibration of the light source pose, which determines the position of the spectrum, is a key to achieving robust FPM systems. Recently, various methods have been proposed to calibrate the misalignment of the light source, including mechanical calibration methods with multi-degree-of-freedom precision mechanical stages, data-driven calibration methods based on the intensity or spectrum information of the captured images, and imaging mechanism calibration methods based on the optical principle of microscope. This paper briefly introduces the basic principle of FPM and the pose deviation of light sources, then reviews the principles and characteristics of three calibration methods. The mechanical methods can eliminate the pose deviation essentially, but it is time-consuming and laborious. The data-driven methods can automatically calibrate the pose deviation, but long calibration time and coupling of parameters limit its application. The imaging mechanism method not only has high robustness, but also can decouple the accurate pose parameters from various systematic errors, which is a promising method with great potential for development and application.
傅里叶叠层显微术计算光学成像相位恢复位姿校正
fourier ptychographic microscopycomputational optical imagingphase retrievalpose calibration
李焱,龚旗煌.从光学显微镜到光学“显纳镜”[J].物理与工程,2015,25(2):31-36,42. doi: 10.3969/j.issn.1009-7104.2015.02.004http://dx.doi.org/10.3969/j.issn.1009-7104.2015.02.004
LI Y, GONG Q H. From optical microscope to optical nanoscope [J]. Physics and Engineering, 2015, 25(2): 31-36, 42. (in Chinese). doi: 10.3969/j.issn.1009-7104.2015.02.004http://dx.doi.org/10.3969/j.issn.1009-7104.2015.02.004
QIAN J M, CAO Y, BI Y, et al. Structured illumination microscopy based on principal component analysis [J]. eLight, 2023, 3(1): 4. doi: 10.1186/s43593-022-00035-xhttp://dx.doi.org/10.1186/s43593-022-00035-x
ZHANG Y B, OUYANG M X, RAY A, et al. Computational cytometer based on magnetically modulated coherent imaging and deep learning [J]. Light: Science & Applications, 2019, 8: 91. doi: 10.1038/s41377-019-0203-5http://dx.doi.org/10.1038/s41377-019-0203-5
LOHMANN A W, DORSCH R G, MENDLOVIC D, et al. Space-bandwidth product of optical signals and systems [J]. Journal of the Optical Society of America A, 1996, 13(3): 470-473. doi: 10.1364/josaa.13.000470http://dx.doi.org/10.1364/josaa.13.000470
LEUNG B O, CHOU K C. Review of super-resolution fluorescence microscopy for biology [J]. Applied Spectroscopy, 2011, 65(9): 967-980. doi: 10.1366/11-06398http://dx.doi.org/10.1366/11-06398
MA B, ZIMMERMANN T, ROHDE M, et al. Use of Autostitch for automatic stitching of microscope images [J]. Micron, 2007, 38(5): 492-499. doi: 10.1016/j.micron.2006.07.027http://dx.doi.org/10.1016/j.micron.2006.07.027
ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects part II [J]. Physica, 1942, 9(10): 974-980, IN1, 981-982, IN3, 983-986. doi: 10.1016/S0031-8914(42)80079-8http://dx.doi.org/10.1016/S0031-8914(42)80079-8
TEAGUE M R. Deterministic phase retrieval: a Green’s function solution [J]. Journal of the Optical Society of America, 1983, 73(11): 1434-1441. doi: 10.1364/josa.73.001434http://dx.doi.org/10.1364/josa.73.001434
ZUO C, LI J J, SUN J S, et al. Transport of intensity equation: a tutorial [J]. Optics and Lasers in Engineering, 2020, 135: 106187. doi: 10.1016/j.optlaseng.2020.106187http://dx.doi.org/10.1016/j.optlaseng.2020.106187
KELLER P J, SCHMIDT A D, WITTBRODT J, et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy [J]. Science, 2008, 322(5904): 1065-1069. doi: 10.1126/science.1162493http://dx.doi.org/10.1126/science.1162493
FIENUP J R. Phase retrieval algorithms: a comparison [J]. Applied Optics, 1982, 21(15): 2758-2769. doi: 10.1364/ao.21.002758http://dx.doi.org/10.1364/ao.21.002758
ZHANG W H, CAO L C, BRADY D J, et al. Twin-image-free holography: a compressive sensing approach [J]. Physical Review Letters, 2018, 121(9): 093902. doi: 10.1103/physrevlett.121.093902http://dx.doi.org/10.1103/physrevlett.121.093902
FIENUP J R, WACKERMAN C C. Phase-retrieval stagnation problems and solutions [J]. Journal of the Optical Society of America A, 1986, 3(11): 1897-1907. doi: 10.1364/josaa.3.001897http://dx.doi.org/10.1364/josaa.3.001897
左超,陈钱.计算光学成像:何来,何处,何去,何从?[J].红外与激光工程,2022,51(2):20220110. doi: 10.3788/IRLA20220110http://dx.doi.org/10.3788/IRLA20220110
ZUO C, CHEN Q. Computational optical imaging: an overview [J]. Infrared and Laser Engineering, 2022, 51(2): 20220110. (in Chinese). doi: 10.3788/IRLA20220110http://dx.doi.org/10.3788/IRLA20220110
ZHENG G A, HORSTMEYER R, YANG C H. Wide-field, high-resolution Fourier ptychographic microscopy [J]. Nature Photonics, 2013, 7(9): 739-745. doi: 10.1038/nphoton.2013.187http://dx.doi.org/10.1038/nphoton.2013.187
OU X Z, HORSTMEYER R, YANG C H E, et al. Quantitative phase imaging via Fourier ptychographic microscopy [J]. Optics Letters, 2013, 38(22): 4845-4848. doi: 10.1364/ol.38.004845http://dx.doi.org/10.1364/ol.38.004845
ZHENG G A, SHEN C, JIANG S W, et al. Concept, implementations and applications of Fourier ptychography [J]. Nature Reviews Physics, 2021, 3(3): 207-223. doi: 10.1038/s42254-021-00280-yhttp://dx.doi.org/10.1038/s42254-021-00280-y
KUANG C F, MA Y, ZHOU R J, et al. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy [J]. Optics Express, 2015, 23(21): 26999-27010. doi: 10.1364/oe.23.026999http://dx.doi.org/10.1364/oe.23.026999
CHUNG J, LU H W, OU X Z, et al. Wide-field Fourier ptychographic microscopy using laser illumination source [J]. Biomedical Optics Express, 2016, 7(11): 4787-4802. doi: 10.1364/boe.7.004787http://dx.doi.org/10.1364/boe.7.004787
ALEXANDROV S A, HILLMAN T R, GUTZLER T, et al. Synthetic aperture Fourier holographic optical microscopy [J]. Physical Review Letters, 2006, 97(16): 168102. doi: 10.1103/physrevlett.97.168102http://dx.doi.org/10.1103/physrevlett.97.168102
HORSTMEYER R, OU X Z, ZHENG G A, et al. Digital pathology with Fourier ptychography [J]. Computerized Medical Imaging and Graphics, 2015, 42: 38-43. doi: 10.1016/j.compmedimag.2014.11.005http://dx.doi.org/10.1016/j.compmedimag.2014.11.005
CHUNG J, OU X Z, KULKARNI R P, et al. Counting white blood cells from a blood smear using Fourier ptychographic microscopy [J]. PLoS One, 2015, 10(7): e0133489. doi: 10.1371/journal.pone.0133489http://dx.doi.org/10.1371/journal.pone.0133489
SUN J S, ZUO C, ZHANG L, et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations [J]. Scientific Reports, 2017, 7: 1187. doi: 10.1038/s41598-017-01346-7http://dx.doi.org/10.1038/s41598-017-01346-7
HORSTMEYER R, CHUNG J, OU X Z, et al. Diffraction tomography with Fourier ptychography [J]. Optica, 2016, 3(8): 827-835. doi: 10.1364/optica.3.000827http://dx.doi.org/10.1364/optica.3.000827
TIAN L, WALLER L. 3D intensity and phase imaging from light field measurements in an LED array microscope [J]. Optica, 2015, 2(2): 104-111. doi: 10.1364/optica.2.000104http://dx.doi.org/10.1364/optica.2.000104
ZUO C, SUN J S, LI J J, et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography [J]. Optics and Lasers in Engineering, 2020, 128: 106003. doi: 10.1016/j.optlaseng.2020.106003http://dx.doi.org/10.1016/j.optlaseng.2020.106003
ZHANG S H, ZHOU G C, WANG Y, et al. A simply equipped Fourier ptychography platform based on an industrial camera and telecentric objective [J]. Sensors, 2019, 19(22): 4913. doi: 10.3390/s19224913http://dx.doi.org/10.3390/s19224913
ZHOU A, WANG W, CHEN N, et al. Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction [J]. Optics Express, 2018, 26(18): 23661-23674. doi: 10.1364/oe.26.023661http://dx.doi.org/10.1364/oe.26.023661
YEH L H, DONG J, ZHONG J S, et al. Experimental robustness of Fourier ptychography phase retrieval algorithms [J]. Optics Express, 2015, 23(26): 33214-33240. doi: 10.1364/oe.23.033214http://dx.doi.org/10.1364/oe.23.033214
SUN J S, CHEN Q, ZHANG Y Z, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy [J]. Biomedical Optics Express, 2016, 7(4): 1336-1350. doi: 10.1364/boe.7.001336http://dx.doi.org/10.1364/boe.7.001336
WEI H J, DU J, LIU L, et al. Accurate and stable two-step LED position calibration method for Fourier ptychographic microscopy [J]. Journal of Biomedical Optics, 2021, 26(10): 106502. doi: 10.1117/1.jbo.26.10.106502http://dx.doi.org/10.1117/1.jbo.26.10.106502
LEE H, CHON B H, AHN H K. Rapid misalignment correction method in reflective Fourier ptychographic microscopy for full field of view reconstruction [J]. Optics and Lasers in Engineering, 2021, 138: 106418. doi: 10.1016/j.optlaseng.2020.106418http://dx.doi.org/10.1016/j.optlaseng.2020.106418
PAN A, ZHANG Y, ZHAO T Y, et al. System calibration method for Fourier ptychographic microscopy [J]. Journal of Biomedical Optics, 2017, 22(9): 096005. doi: 10.1117/1.jbo.22.9.096005http://dx.doi.org/10.1117/1.jbo.22.9.096005
ZHU Y Q, SUN M L, WU P L, et al. Space-based correction method for LED array misalignment in Fourier ptychographic microscopy [J]. Optics Communications, 2022, 514: 128163. doi: 10.1016/j.optcom.2022.128163http://dx.doi.org/10.1016/j.optcom.2022.128163
ZHANG J Z, XU T F, LIU J D, et al. Precise brightfield localization alignment for Fourier ptychographic microscopy [J]. IEEE Photonics Journal, 2018, 10(1): 6900113. doi: 10.1109/jphot.2017.2780189http://dx.doi.org/10.1109/jphot.2017.2780189
CHEN Y W, XU T F, ZHANG J Z, et al. Precise and independent position correction strategy for Fourier ptychographic microscopy [J]. Optik, 2022, 265: 169481. doi: 10.1016/j.ijleo.2022.169481http://dx.doi.org/10.1016/j.ijleo.2022.169481
LIU J, LI Y, WANG W B, et al. Stable and robust frequency domain position compensation strategy for Fourier ptychographic microscopy [J]. Optics Express, 2017, 25(23): 28053-28067. doi: 10.1364/oe.25.028053http://dx.doi.org/10.1364/oe.25.028053
ZHANG J L, TAO X, SUN P, et al. A positional misalignment correction method for Fourier ptychographic microscopy based on the quasi-Newton method WITH A global optimization module [J]. Optics Communications, 2019, 452: 296-305. doi: 10.1016/j.optcom.2019.07.046http://dx.doi.org/10.1016/j.optcom.2019.07.046
ECKERT R, PHILLIPS Z F, WALLER L. Efficient illumination angle self-calibration in Fourier ptychography [J]. Applied Optics, 2018, 57(19): 5434-5442. doi: 10.1364/ao.57.005434http://dx.doi.org/10.1364/ao.57.005434
LI J J, MATLOCK A, LI Y Z, et al. Resolution-enhanced intensity diffraction tomography in high numerical aperture label-free microscopy [J]. Photonics Research, 2020, 8(12): 1818-1826. doi: 10.1364/prj.403873http://dx.doi.org/10.1364/prj.403873
YANG D L, ZHANG S H, ZHENG C J, et al. Fourier ptychography multi-parameunter neural network with composite physical priori optimization [J]. Biomedical Optics Express, 2022, 13(5): 2739-2753. doi: 10.1364/boe.456380http://dx.doi.org/10.1364/boe.456380
ZHANG J L, TAO X, YANG L, et al. Forward imaging neural network with correction of positional misalignment for Fourier ptychographic microscopy [J]. Optics Express, 2020, 28(16): 23164-23175. doi: 10.1364/oe.398951http://dx.doi.org/10.1364/oe.398951
ZHAO M, ZHANG X H, TIAN Z M, et al. Neural network model with positional deviation correction for Fourier ptychography [J]. Journal of the Society for Information Display, 2021, 29(10): 749-757. doi: 10.1002/jsid.1030http://dx.doi.org/10.1002/jsid.1030
OU X Z, ZHENG G A, YANG C H E. Embedded pupil function recovery for Fourier ptychographic microscopy [J]. Optics Express, 2014, 22(5): 4960-4972. doi: 10.1364/oe.22.004960http://dx.doi.org/10.1364/oe.22.004960
CHUNG J, MARTINEZ G W, LENCIONI K C, et al. Computational aberration compensation by coded-aperture-based correction of aberration obtained from optical Fourier coding and blur estimation [J]. Optica, 2019, 6(5): 647- 661. doi: 10.1364/optica.6.000647http://dx.doi.org/10.1364/optica.6.000647
SONG P M, JIANG S W, ZHANG H, et al. Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology [J]. APL Photonics, 2019, 4(5): 050802. doi: 10.1063/1.5090552http://dx.doi.org/10.1063/1.5090552
SHEN C, CHAN A C S, CHUNG J, et al. Computational aberration correction of VIS-NIR multispectral imaging microscopy based on Fourier ptychography [J]. Optics Express, 2019, 27(18): 24923-24937. doi: 10.1364/oe.27.024923http://dx.doi.org/10.1364/oe.27.024923
XIANG M, PAN A, LIU J P, et al. Phase diversity-based Fourier ptychography for varying aberration correction [J]. Frontiers in Physics, 2022, 10: 848943. doi: 10.3389/fphy.2022.848943http://dx.doi.org/10.3389/fphy.2022.848943
ZUO C, SUN J S, CHEN Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy [J]. Optics Express, 2016, 24(18): 20724-20744. doi: 10.1364/oe.24.020724http://dx.doi.org/10.1364/oe.24.020724
FAN Y, SUN J S, CHEN Q, et al. Adaptive denoising method for Fourier ptychographic microscopy [J]. Optics Communications, 2017, 404: 23-31. doi: 10.1016/j.optcom.2017.05.026http://dx.doi.org/10.1016/j.optcom.2017.05.026
BIAN Z C, DONG S Y, ZHENG G A. Adaptive system correction for robust Fourier ptychographic imaging [J]. Optics Express, 2013, 21(26): 32400-32410. doi: 10.1364/oe.21.032400http://dx.doi.org/10.1364/oe.21.032400
WANG Y, ZHOU G C, HU Y, et al. Microscopic image enhancement based on Fourier ptychography technique [C]//Proceeding of SPIE 10990, . Baltimore: SPIE, 2019: 109900B. doi: 10.1117/12.2519602http://dx.doi.org/10.1117/12.2519602
ZHENG C J, ZHANG S H, ZHOU G C, et al. Robust Fourier ptychographic microscopy via a physics-based defocusing strategy for calibrating angle-varied LED illumination [J]. Biomedical Optics Express, 2022, 13(3): 1581-1594. doi: 10.1364/boe.452507http://dx.doi.org/10.1364/boe.452507
ZHENG C J, ZHANG S H, YANG D L, et al. Robust full-pose-parameter estimation for the LED array in Fourier ptychographic microscopy [J]. Biomedical Optics Express, 2022, 13(8): 4468-4482. doi: 10.1364/boe.467622http://dx.doi.org/10.1364/boe.467622
SHU Y F, SUN J S, LYU J M, et al. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy [J]. PhotoniX, 2022, 3(1): 24. doi: 10.1186/s43074-022-00071-3http://dx.doi.org/10.1186/s43074-022-00071-3
PHILLIPS Z F, D’AMBROSIO M V, TIAN L, et al. Multi-contrast imaging and digital refocusing on a mobile microscope with a domed LED array [J]. PLoS One, 2015, 10(5): e0124938. doi: 10.1371/journal.pone.0124938http://dx.doi.org/10.1371/journal.pone.0124938
RODENBURG J M, FAULKNER H M L. A phase retrieval algorithm for shifting illumination [J]. Applied Physics Letters, 2004, 85(20): 4795-4797. doi: 10.1063/1.1823034http://dx.doi.org/10.1063/1.1823034
FAULKNER H M L, RODENBURG J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm [J]. Physical Review Letters, 2004, 93(2): 023903. doi: 10.1103/physrevlett.93.023903http://dx.doi.org/10.1103/physrevlett.93.023903
SHENFIELD A, RODENBURG J M. Evolutionary determination of experimental parameters for ptychographical imaging [J]. Journal of Applied Physics, 2011, 109(12): 124510. doi: 10.1063/1.3600235http://dx.doi.org/10.1063/1.3600235
MAIDEN A M, HUMPHRY M J, SARAHAN M C, et al. An annealing algorithm to correct positioning errors in ptychography [J]. Ultramicroscopy, 2012, 120: 64-72. doi: 10.1016/j.ultramic.2012.06.001http://dx.doi.org/10.1016/j.ultramic.2012.06.001
BECKERS M, SENKBEIL T, GORNIAK T, et al. Drift correction in ptychographic diffractive imaging [J]. Ultramicroscopy, 2013, 126: 44-47. doi: 10.1016/j.ultramic.2012.11.006http://dx.doi.org/10.1016/j.ultramic.2012.11.006
0
浏览量
128
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构