1.兰州交通大学 电子与信息工程学院, 甘肃 兰州 730070
[ "吕东霞(1995—),女,甘肃天水人,硕士研究生,2019年于西北师范大学获得学士学位,主要从事计算机视觉、图像处理的研究。E-mail:2464410424@ qq.com" ]
[ "杨燕(1972—),女,河南临颍人,博士,教授,2010年于兰州大学获得博士学位,主要从事数字图像处理、智能信息处理及语音信号处理方面的研究。E-mail:yangyantd@mail.lzjtu.cn" ]
扫 描 看 全 文
吕东霞, 杨燕, 张金龙, 等. 基于对数-S型函数分段估计的快速去雾算法[J]. 液晶与显示, 2023,38(8):1084-1094.
LÜ Dong-xia, YANG Yan, ZHANG Jing-long, et al. Fast dehazing algorithm based on segmented estimation of log-S type function[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1084-1094.
吕东霞, 杨燕, 张金龙, 等. 基于对数-S型函数分段估计的快速去雾算法[J]. 液晶与显示, 2023,38(8):1084-1094. DOI: 10.37188/CJLCD.2022-0331.
LÜ Dong-xia, YANG Yan, ZHANG Jing-long, et al. Fast dehazing algorithm based on segmented estimation of log-S type function[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1084-1094. DOI: 10.37188/CJLCD.2022-0331.
针对雾霾天气下获取的图像细节丢失、颜色偏移、视觉质量退化等问题,提出一种基于对数-S型函数分段估计的大气光幕估计快速去雾算法。首先,在大气散射模型上深入推导,得到了大气光幕与有雾图像最小通道的正相关关系;然后,根据有雾图像不同区域具有不同的雾浓度,构造了分区域约束模型用以估计有雾图像的大气光幕;最后,提出基于中值滤波优化的中通道局部大气光估计方法,并结合大气散射模型恢复无雾图像。实验结果表明:所提算法复原图像的新增可见边、平均梯度,信息熵分别提升了17.4%、50.5%、30%,运行时间比传统快速去雾算法降低了17.5%。本文算法具有去雾彻底、颜色自然、细节明显的优点。
To address the problems of detail loss, color shift and visual quality degradation of images acquired under hazy weather, a fast dehazing algorithm is proposed for estimating atmospheric light veil based on segmental estimation of log-S type function. Firstly, the positive correlation between the atmospheric light veil and the minimum channel of the haze image is obtained by in-depth derivation on the atmospheric scattering model. Then, according to the different haze concentrations in different regions of the haze image, a segmented estimation model is constructed to estimate the atmospheric light veil of the haze image. Finally, the method of local atmospheric light estimation in the middle channel based on median filter optimization is proposed, and the haze-free image is recovered by the atmospheric scattering model. The experimental results show that the new visible edges, average gradient and information entropy of the restored image are increased respectively by 17.4%, 50.5% and 30%, the running time is 17.5% lower than that of the conventional fast dehazing algorithm. The algorithm is able to recover images with complete dehazing, natural colour and significant detail recovery.
图像去雾大气光幕对数-S型函数分段估计中通道大气光
image dehazingatmospheric light veillog-S type functionsegmentation estimationmid-channel atmospheric light
吴迪,朱青松. 图像去雾的最新研究进展[J]. 自动化学报,2015,41(2):221-239. doi: 10.16383/j.aas.2015.c131137http://dx.doi.org/10.16383/j.aas.2015.c131137
WU D, ZHU Q S. The latest research progress of image dehazing [J]. Acta Automatica Sinica, 2015, 41(2): 221-239. (in Chinese). doi: 10.16383/j.aas.2015.c131137http://dx.doi.org/10.16383/j.aas.2015.c131137
KIM J H, JANG W D, SIM J Y, et al. Optimized contrast enhancement for real-time image and video dehazing [J]. Journal of Visual Communication and Image Representation, 2013, 24(3): 410-425. doi: 10.1016/j.jvcir.2013.02.004http://dx.doi.org/10.1016/j.jvcir.2013.02.004
刘海波,杨杰,吴正平,等. 基于暗通道先验和Retinex理论的快速单幅图像去雾方法[J]. 自动化学报,2015,41(7):1264-1273.
LIU H B, YANG J, WU Z P, et al. A fast single image dehazing method based on dark channel prior and retinex theory [J]. Acta Automatica Sinica, 2015, 41(7): 1264-1273. (in Chinese)
ZHANG H, LIU X, HUANG Z T, et al. Single image dehazing based on fast wavelet transform with weighted image fusion [C]. IEEE International Conference on Image Processing. Paris: IEEE, 2015. doi: 10.1109/icip.2014.7025921http://dx.doi.org/10.1109/icip.2014.7025921
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/tpami.2010.168http://dx.doi.org/10.1109/tpami.2010.168
ZHU Q S, MAI J, SHAO L. A fast single image haze removal algorithm using color attenuation prior [J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533. doi: 10.1109/tip.2015.2446191http://dx.doi.org/10.1109/tip.2015.2446191
WANG W C, YUAN X H, WU X J, et al. Fast image dehazing method based on linear transformation [J]. IEEE Transactions on Multimedia, 2017, 19(6): 1142-1155. doi: 10.1109/tmm.2017.2652069http://dx.doi.org/10.1109/tmm.2017.2652069
YANG Y, WANG Z W. Haze removal: push DCP at the edge [J]. IEEE Signal Processing Letters, 2020, 27: 1405-1409. doi: 10.1109/lsp.2020.3013741http://dx.doi.org/10.1109/lsp.2020.3013741
TAREL J P, HAUTIERE N. Fast visibility restoration from a single color or gray level image [C]. IEEE International Conference on Computer Vision. Kyoto: IEEE, 2009:2201-2208. doi: 10.1109/iccv.2009.5459251http://dx.doi.org/10.1109/iccv.2009.5459251
REN W Q, MA L, ZHANG J W, et al. Gated fusion network for single image dehazing [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 3253-3261. doi: 10.1109/cvpr.2018.00343http://dx.doi.org/10.1109/cvpr.2018.00343
LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: All-in-One dehazing network [C]. 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4780-4788. doi: 10.1109/iccv.2017.511http://dx.doi.org/10.1109/iccv.2017.511
QIN X, WANG Z L, BAI Y C, et al. FFA-Net: Feature fusion attention network for single image dehazing [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 11908-11915. doi: 10.1609/aaai.v34i07.6865http://dx.doi.org/10.1609/aaai.v34i07.6865
NAYAR S K, NARASIMHAN S G. Vision in bad weather [C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999: 820-827. doi: 10.1109/iccv.1999.790306http://dx.doi.org/10.1109/iccv.1999.790306
RAIKWAR S C, TAPASWI S. Lower bound on transmission using non-linear bounding function in single image dehazing [J]. IEEE Transactions on Image Processing, 2020, 29: 4832-4847. doi: 10.1109/tip.2020.2975909http://dx.doi.org/10.1109/tip.2020.2975909
WANG M W, ZHU F Z, BAI Y Y. An improved image blind deblurring based on dark channel prior [J]. Optoelectronics Letters, 2021, 17(1): 40-46. doi: 10.1007/s11801-021-0081-yhttp://dx.doi.org/10.1007/s11801-021-0081-y
杨燕, 张金龙, 王蓉. 基于高斯凸优化与光幕双约束的退化场景复原 [J]. 光学学报, 2021, 41(19): 133-144.
YANG Y, ZHANG J L, WANG R. Degraded scene recovery based on Gaussian convex optimization with light curtain double constraint [J]. Journal of Optics, 2021, 41(19): 133-144. (in Chinese).
吴正平,岑帅红. 基于自适应gamma校正估计的图像去雾算法[J]. 液晶与显示,2022,37(1):106-115. doi: 10.37188/CJLCD.2021-0182http://dx.doi.org/10.37188/CJLCD.2021-0182
WU Z P, CEN S H. Image dehazing algorithm based on adaptive gamma correction estimation [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(1): 106-115. (in Chinese). doi: 10.37188/CJLCD.2021-0182http://dx.doi.org/10.37188/CJLCD.2021-0182
吕建威,钱锋,韩昊男,等. 结合天空分割和雾气浓度估计的图像去雾[J]. 光学 精密工程,2022,30(4):464-477. doi: 10.37188/OPE.20223004.0464http://dx.doi.org/10.37188/OPE.20223004.0464
LV J W, QIAN F, HAN H N, et al. Single image dehazing with sky segmentation and haze density estimation [J]. Optics and Precision Engineering, 2022, 30(4): 464-477. (in Chinese). doi: 10.37188/OPE.20223004.0464http://dx.doi.org/10.37188/OPE.20223004.0464
何惜琴,陈冬冬. 基于YUV颜色模型与导向滤波的图像去雾算法[J]. 液晶与显示,2021,36(8):1166-1173. doi: 10.37188/CJLCD.2020-0313http://dx.doi.org/10.37188/CJLCD.2020-0313
HE X Q, CHEN D D. Image defogging algorithm based on YUV color model and guided filtering [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(8): 1166-1173. (in Chinese). doi: 10.37188/CJLCD.2020-0313http://dx.doi.org/10.37188/CJLCD.2020-0313
姜雨彤,杨忠琳,朱梦琪,等. 适应性双通道先验的图像去雾方法[J]. 光学 精密工程,2022,30(10):1246-1262. doi: 10.37188/ope.20223010.1246http://dx.doi.org/10.37188/ope.20223010.1246
JIANG Y T, YANG Z L, ZHU M Q, et al. Image dehazing method based on adaptive bi-channel priors [J]. Optics and Precision Engineering, 2022, 30(10): 1246-1262. (in Chinese). doi: 10.37188/ope.20223010.1246http://dx.doi.org/10.37188/ope.20223010.1246
SUN W, WANG H, SUN C H, et al. Fast single image haze removal via local atmospheric light veil estimation [J]. Computers & Electrical Engineering, 2015, 46: 371-383. doi: 10.1016/j.compeleceng.2015.02.009http://dx.doi.org/10.1016/j.compeleceng.2015.02.009
CHOI L K, YOU J, BOVIK A C. Referenceless prediction of perceptual fog density and perceptual image defogging [J]. IEEE Transactions on Image Processing, 2015, 24(11): 3888-3901. doi: 10.1109/tip.2015.2456502http://dx.doi.org/10.1109/tip.2015.2456502
MIN X K, ZHAI G T, GU K, et al. Objective quality evaluation of dehazed images [J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2879-2892. doi: 10.1109/tits.2018.2868771http://dx.doi.org/10.1109/tits.2018.2868771
郭璠,蔡自兴. 图像去雾算法清晰化效果客观评价方法[J]. 自动化学报,2012,38(9):1410-1419. doi: 10.3724/sp.j.1004.2012.01410http://dx.doi.org/10.3724/sp.j.1004.2012.01410
GUO F, CAI Z X. Objective assessment method for the clearness effect of image defogging algorithm [J]. Acta Automatica Sinica, 2012, 38(9): 1410-1419. (in Chinese). doi: 10.3724/sp.j.1004.2012.01410http://dx.doi.org/10.3724/sp.j.1004.2012.01410
0
浏览量
93
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构