1.兰州交通大学 电子与信息工程学院, 甘肃 兰州 730070
[ "杨 燕(1972—),女,河南临颍人,博士,教授,2010年于兰州大学获得博士学位,主要从事数字图像处理、智能信息处理及语音信号处理方面的研究。E-mail:yangyantd@mail.lzjtu.cn" ]
[ "张雯波(1997—),女,甘肃酒泉人,硕士研究生,2020年于长春理工大学获得学士学位,主要从事计算机视觉、数字图像处理方面的研究。E-mail:522380710@qq.com" ]
扫 描 看 全 文
杨燕, 张雯波. 基于雾气分布的大气光幕估计去雾算法[J]. 液晶与显示, 2023,38(4):534-542.
YANG Yan, ZHANG Wen-bo. Dehazing algorithm with atmospheric light veil estimation based on haze distribution[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(4):534-542.
杨燕, 张雯波. 基于雾气分布的大气光幕估计去雾算法[J]. 液晶与显示, 2023,38(4):534-542. DOI: 10.37188/CJLCD.2022-0237.
YANG Yan, ZHANG Wen-bo. Dehazing algorithm with atmospheric light veil estimation based on haze distribution[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(4):534-542. DOI: 10.37188/CJLCD.2022-0237.
由于雾霾天气下空气中介质粒子的影响,成像设备所捕获的图像通常会存在对比度低、色彩丢失等问题。针对这些问题,本文提出一种基于雾气分布的大气光幕估计去雾算法。首先,将Fade方法提取的初始雾气分布图像进行阈值分割与细化处理得到较为准确的雾气分布信息。其次,通过分析景深、雾浓度、大气光幕之间的关系建立大气光幕估计模型。最后,通过亮度权重图与自适应大气光阈值选取大气光区域,获取较为准确的大气光,进而恢复退化场景。实验与结果表明,本文算法恢复的图像清晰自然,去雾效果彻底,并且能够保留图像中的细节信息。
Due to the influence of medium particles in the air under hazy weather, the images captured by imaging devices usually suffer from low contrast and color loss. To address these problems, an atmospheric light veil estimation dehazing algorithm based on haze distribution is proposed in this paper. Firstly, the initial haze distribution image extracted by twelve features of the image is subjected to thresholding and refinement to obtain more accurate haze distribution information. Secondly, the atmospheric light veil estimation model is established by analyzing relationships among the depth of field, haze concentration, and atmospheric light veil. Finally, the atmospheric light region is selected by luminance weighting map and adaptive atmospheric light threshold, and then recover the degraded scene. The experimental results show that this algorithm restores images clearly and can retain detailed information in the image.
图像去雾雾气分布大气光幕估计模型亮度偏差自适应大气光阈值
image dehazinghaze distributionestimation model of atmospheric veilluminance deviationadaptive atmospheric light threshold
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/tpami.2010.168http://dx.doi.org/10.1109/tpami.2010.168
WANG W C, YUAN X H, WU X J, et al. Fast image dehazing method based on linear transformation [J]. IEEE Transactions on Multimedia, 2017, 19(6): 1142-1155. doi: 10.1109/tmm.2017.2652069http://dx.doi.org/10.1109/tmm.2017.2652069
YANG Y, WANG Z W. Haze removal: push DCP at the edge [J]. IEEE Signal Processing Letters, 2020, 27: 1405-1409. doi: 10.1109/lsp.2020.3013741http://dx.doi.org/10.1109/lsp.2020.3013741
李鹏飞,何小海,卿粼波,等.暗通道融合亮通道优化的夜间图像去雾算法 [J].液晶与显示,2021,36(4):596-604. doi: 10.37188/CJLCD.2020-0208http://dx.doi.org/10.37188/CJLCD.2020-0208
LI P F, HE X H, QING L B, et al. Nighttime dehazing algorithm of dark channel and bright channel fusion optimization [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(4): 596-604. (in Chinese). doi: 10.37188/CJLCD.2020-0208http://dx.doi.org/10.37188/CJLCD.2020-0208
LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: all-in-one dehazing network [C]//IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4780-4788. doi: 10.1109/iccv.2017.511http://dx.doi.org/10.1109/iccv.2017.511
CHEN D D, HE M M, FAN Q N, et al. Gated context aggregation network for image dehazing and deraining [C]//IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2019: 1375-1383. doi: 10.1109/wacv.2019.00151http://dx.doi.org/10.1109/wacv.2019.00151
QIN X, WANG Z, BAI Y, et al. FFA-Net: Feature fusion attention network for single image dehazing [C]//The Thirty-Fourth AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 11908-11915. doi: 10.1609/aaai.v34i07.6865http://dx.doi.org/10.1609/aaai.v34i07.6865
HUANG L Q, LUO R C, LIU X, et al. Spectral imaging with deep learning [J]. Light: Science & Applications, 2022, 11: 61. doi: 10.1038/s41377-022-00743-6http://dx.doi.org/10.1038/s41377-022-00743-6
NAYAR S K, NARASIMHAN S G. Vision in bad weather [C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999: 820-827. doi: 10.1109/iccv.1999.790306http://dx.doi.org/10.1109/iccv.1999.790306
ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior [J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533. doi: 10.1109/tip.2015.2446191http://dx.doi.org/10.1109/tip.2015.2446191
SALAZAR-COLORES S, CABAL-YEPEZ E, RAMOS-ARREGUIN J M, et al. A fast image dehazing algorithm using morphological reconstruction [J]. IEEE Transactions on Image Processing, 2019, 28(5): 2357-2366. doi: 10.1109/tip.2018.2885490http://dx.doi.org/10.1109/tip.2018.2885490
QIN C X, GU X H. A single image dehazing method based on decomposition strategy [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 279-293. doi: 10.23919/jsee.2022.000029http://dx.doi.org/10.23919/jsee.2022.000029
SONG C M, TANG Y, QIAO M Z, et al. Image dehazing algorithm for relieving halo effect and color distortion in smooth regions [J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(6): 953-969. doi: 10.3724/sp.j.1089.2022.19080http://dx.doi.org/10.3724/sp.j.1089.2022.19080
杨燕,张金龙,王蓉.基于高斯凸优化与光幕双约束的退化场景复原 [J].光学学报,2021,41(19):1910001.
YANG Y, ZHANG J L, WANG R. Degraded scene restoration based on Gaussian convex optimization and double constraints of light curtain [J]. Acta Optica Sinica, 2021, 41(19): 1910001. (in Chinese)
JU M Y, DING C, REN W Q, et al. IDE: Image dehazing and exposure using an enhanced atmospheric scattering model [J]. IEEE Transactions on Image Processing, 2021, 30: 2180-2192. doi: 10.1109/tip.2021.3050643http://dx.doi.org/10.1109/tip.2021.3050643
杨勇,邱根莹,黄淑英,等.基于改进大气散射模型的单幅图像去雾方法 [J].北京航空航天大学学报,2022,48(8):1364-1375.
YANG Y, QIU G Y, HUANG S Y, et al. Single image dehazing method based on improved atmospheric scattering model [J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1364-1375. (in Chinese)
CHOI L K, YOU K J, BOVIK A C. Referenceless prediction of perceptual fog density and perceptual image defogging [J]. IEEE Transactions on Image Processing, 2015, 24(11): 3888-3901. doi: 10.1109/tip.2015.2456502http://dx.doi.org/10.1109/tip.2015.2456502
ANDROUTSOS P, KUSHKI A, ANDROUTSOS K N, et al. Distributed MPEG-7 image indexing using small world user agents [C]//International Conference on Image Processing. Singapore: IEEE, 2004: 641-644.
杨燕,刘珑珑,张得欣,等.结合自适应雾气估计的快速单幅图像去雾 [J].光学 精密工程,2019,27(10):2263-2271. doi: 10.3788/ope.20192710.2263http://dx.doi.org/10.3788/ope.20192710.2263
YANG Y, LIU L L, ZHANG D X, et al. Fast single image dehazing combined with adaptive haze estimation [J]. Optics and Precision Engineering, 2019, 27(10): 2263-2271. (in Chinese). doi: 10.3788/ope.20192710.2263http://dx.doi.org/10.3788/ope.20192710.2263
GANGULY B, BHATTACHARYA A, SRIVASTAVA A, et al. Single image haze removal with haze map optimization for various haze concentrations [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 286-301. doi: 10.1109/tcsvt.2021.3059573http://dx.doi.org/10.1109/tcsvt.2021.3059573
TAREL J P, HAUTIÈRE N. Fast visibility restoration from a single color or gray level image [C] //IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 2201-2208. doi: 10.1109/iccv.2009.5459251http://dx.doi.org/10.1109/iccv.2009.5459251
KIM S E, PARK T H, EOM I K. Fast single image dehazing using saturation based transmission map estimation [J]. IEEE Transactions on Image Processing, 2019, 29: 1985-1998. doi: 10.1109/tip.2019.2948279http://dx.doi.org/10.1109/tip.2019.2948279
YANG A P, LIU J, XING J N, et al. Content feature and style feature fusion network for single image dehazing [J/OL]. Acta Automatica Sinica, 2020. (2020-07-10). doi: 10.1109/icicas51530.2020.00064http://dx.doi.org/10.1109/icicas51530.2020.00064
LI R T, TAN R T, CHEONG L F. All in one bad weather removal using architectural search [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 3172-3182. doi: 10.1109/cvpr42600.2020.00324http://dx.doi.org/10.1109/cvpr42600.2020.00324
HE L Y, ZHAO J Z, ZHENG N N, et al. Haze removal using the difference-structure-preservation prior [J]. IEEE Transactions on Image Processing, 2017, 26(3): 1063-1075. doi: 10.1109/tip.2016.2644267http://dx.doi.org/10.1109/tip.2016.2644267
0
浏览量
59
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构