1.河北工业大学 理学院, 天津 300401
[ "孙桂姣(1996—),女,河北张家口人,硕士研究生,2020年于邯郸学院获得学士学位,主要从事液晶物理与液晶器件物理的研究。E-mail:1291616745@qq.com" ]
[ "张艳君(1977—),女,河北邢台人,博士,副教授,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事液晶物理与液晶器件物理的研究。E-mail:zyj513@hebut.edu.cn" ]
扫 描 看 全 文
孙桂姣, 李延敏, 张艳君, 等. 垂直于圆柱轴电场作用下圆柱腔内向列相液晶的指向矢分布[J]. 液晶与显示, 2023,38(8):1005-1013.
SUN Gui-jiao, LI Yan-min, ZHANG Yan-jun, et al. Director distribution of nematic liquid crystals in a cylindrical cavity under electric field perpendicular to the cylindrical axis[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1005-1013.
孙桂姣, 李延敏, 张艳君, 等. 垂直于圆柱轴电场作用下圆柱腔内向列相液晶的指向矢分布[J]. 液晶与显示, 2023,38(8):1005-1013. DOI: 10.37188/CJLCD.2023-0070.
SUN Gui-jiao, LI Yan-min, ZHANG Yan-jun, et al. Director distribution of nematic liquid crystals in a cylindrical cavity under electric field perpendicular to the cylindrical axis[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1005-1013. DOI: 10.37188/CJLCD.2023-0070.
曲面液晶系统具有与平面液晶系统不同的特性。本文在轴向强锚定边界条件下,施加垂直于圆柱轴方向的匀强电场,对圆柱腔内向列相液晶的指向矢形变进行研究。基于液晶连续体弹性理论,给出系统的平衡态方程及边界条件,并通过有限差分迭代方法进行了数值计算。得出了指向矢形变阈值电场的解析解,发现不同的弹性常数会导致圆柱腔横截面上的指向矢变化的不对称性。此研究为光子晶体光纤的实验研究提供了更准确的理论分析。
The curved liquid-crystal system has different characteristics from the planar liquid-crystal system. In this paper, the director of nematic liquid crystal in a cylindrical cavity is studied by applying a uniform electric field perpendicular to the axis of the cylinder under the strong axial anchoring boundary condition. Based on the elastic continuum theory of liquid crystal, the equilibrium equations and boundary conditions of the system are given. The analytical solution of the threshold electric field for the deformation of the director is obtained. It is found that different elastic constants will lead to the asymmetry of the change of the director on the cross section of the cylindrical cavity. It provides a more accurate theoretical analysis for the experimental research of photonic crystal fibers.
圆柱腔阈值电场向列相液晶指向矢
cylindrical cavityelectric thresholdnematic liquid crystaldirector
RAVNIK M, ŽUMER S. Handbook of Liquid Crystals [M]. Oxford: University Press, 2014: 1-22. doi: 10.1002/9783527671403.hlc092http://dx.doi.org/10.1002/9783527671403.hlc092
KITZEROW H S, LIU B, XU F, et al. Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring [J]. Phys. Rev. E, 1996, 54(1): 568-575. doi: 10.1103/physreve.54.568http://dx.doi.org/10.1103/physreve.54.568
KONING V, VAN ZUIDEN B C, KAMIEN R D, et al. Saddle-splay screening and chiral symmetry breaking in toroidal nematics [J]. Soft Matter, 2014, 10(23): 4192-4198. doi: 10.1039/c4sm00076ehttp://dx.doi.org/10.1039/c4sm00076e
LAVRENTOVICH O D, SERGAN V V. Parity-breaking phase transition in tangentially anchored nematic drops [J]. Il Nuovo Cimento D, 1990, 12(9): 1219-1222. doi: 10.1007/bf02450386http://dx.doi.org/10.1007/bf02450386
YANG D K, JEONG K U, CHENG S Z D. Structure of liquid crystal droplets with chiral propeller texture [J]. J. Phys. Chem. B, 2008, 112(5): 1358-1366. doi: 10.1021/jp076719bhttp://dx.doi.org/10.1021/jp076719b
CHICCOLI C, PASINI P, TEIXEIRA DE SOUZA R, et al. Computer simulations of the ordering in a hybrid cylindrical film of nematic liquid crystals [J]. Phys. Rev. E, 2011, 84(4): 041705. doi: 10.1103/physreve.84.041705http://dx.doi.org/10.1103/physreve.84.041705
CHYCHŁOWSKI M, YAROSHCHUK O, KRAVCHUK R, et al. Liquid crystal alignment in cylindrical microcapillaries [J]. Opto-Electron. Rev., 2012, 20(1): 47-52. doi: 10.2478/s11772-012-0002-5http://dx.doi.org/10.2478/s11772-012-0002-5
LI J F, ZHANG Y J, GAO M C, et al. Influence of saddle-splay deformation on lyotropic chromonic liquid crystals confined between two coaxial cylinders [J]. Liq. Cryst., 2020, 47(4): 500-507. doi: 10.1080/02678292.2019.1658815http://dx.doi.org/10.1080/02678292.2019.1658815
ZHANG H W, LI J F, ZHANG Y J, et al. Influence of planar anchoring on escaped-twisted configurations of liquid crystals in a cylindrical cavity [J]. Liq. Cryst., 2021, 48(5): 713-721. doi: 10.1080/02678292.2020.1813341http://dx.doi.org/10.1080/02678292.2020.1813341
ZHANG H W, ZHANG Y J, WANG Y K, et al. Director configuration of liquid crystals in a cylindrical cavity with homeotropic anchoring conditions [J]. Mol. Phys., 2021, 119(24): e1966532. doi: 10.1080/00268976.2021.1966532http://dx.doi.org/10.1080/00268976.2021.1966532
ZHANG Y S, MA C L, RUDYAK V Y, et al. Thermal and optical manipulation of morphology in cholesteric liquid crystal microdroplets constrained on microfibers [J]. J. Mol. Liq., 2021, 328: 115383. doi: 10.1016/j.molliq.2021.115383http://dx.doi.org/10.1016/j.molliq.2021.115383
DE GENNES P G. The Physics of Liquid Crystals [M]. Oxford: Clarendon Press, 1974.
LESLIE F M. Some magneto-hydrostatic effects in nematic liquid crystals [J]. J. Phys. D: Appl. Phys., 1970, 3(6): 889-897. doi: 10.1088/0022-3727/3/6/309http://dx.doi.org/10.1088/0022-3727/3/6/309
KINI U D. The effect of magnetic fields and boundary conditions on the Couette flow of nematics [J]. Pramana, 1976, 7(4): 223-235. doi: 10.1007/bf02846483http://dx.doi.org/10.1007/bf02846483
TSURU H. Stability analysis of nematics between two concentric cylinders [J]. J. Phys. Soc. Japan, 1990, 59(5): 1600-1616. doi: 10.1143/jpsj.59.1600http://dx.doi.org/10.1143/jpsj.59.1600
AOKI N, OHKI Y, YAHAGI K. Deformation of nematic-positive liquid crystals by an electric field between two co-axial cylindrical electrodes [J]. Jpn. J. Appl. Phys., 1979, 18(3): 523-526. doi: 10.1143/jjap.18.523http://dx.doi.org/10.1143/jjap.18.523
WILLIAMS D R M, HALPERIN A. Nematic liquid crystal in a tube: The Fréedericksz transition [J]. Phys. Rev. E, 1993, 48(4): R2366-R2369. doi: 10.1103/physreve.48.r2366http://dx.doi.org/10.1103/physreve.48.r2366
DE SOUZA R T, DIAS J C, MENDES R S, et al. Critical exponents for Fréedericskz transition in nematics between concentric cylinders [J]. Phys. A, 2010, 389(5): 945-950. doi: 10.1016/j.physa.2009.11.006http://dx.doi.org/10.1016/j.physa.2009.11.006
CORELLA-MADUEÑO A, CASTELLANOS-MORENO A, GUTIÉRREZ-LÓPEZ S, et al. Threshold field for a nematic liquid crystal confined between two coaxial cylinders [J]. Phys. Rev. E, 2008, 78(2): 022701. doi: 10.1103/physreve.78.022701http://dx.doi.org/10.1103/physreve.78.022701
LIU H H, ZHANG Y J, YUE H R, et al. Influence of flexoelectric effect on director alignment of nematic liquid crystals in axial arrangement cylindrical cells [J]. Chin. Phys. Lett., 2018, 35(2): 026103. doi: 10.1088/0256-307x/35/2/026103http://dx.doi.org/10.1088/0256-307x/35/2/026103
HALEVI P, REYES-AVENDAÑO J A, REYES-CERVANTES J A. Electrically tuned phase transition and band structure in a liquid-crystal-infilled photonic crystal [J]. Phys. Rev. E, 2006, 73(4): 040701. doi: 10.1103/physreve.73.040701http://dx.doi.org/10.1103/physreve.73.040701
ZHANG Y J, WANG L, ZHANG H W, et al. Flexoelectric effects on escaped twisted configurations of nematic liquid crystal 5CB with chiral dopants in a cylindrical cavity [J]. Liq. Cryst., 2021, 48(4): 555-563. doi: 10.1080/02678292.2020.1795738http://dx.doi.org/10.1080/02678292.2020.1795738
YING X, LI M, TAO L, et al. Optical-field-induced reorientation of nematic liquid crystal doped with FeTPPCl based on the resonant model [J]. Appl. Phys. A, 2007, 86(2): 207-211. doi: 10.1007/s00339-006-3731-9http://dx.doi.org/10.1007/s00339-006-3731-9
PENG Z H, LIU Y G, YAO L S, et al. Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap [J]. Opt. Lett., 2011, 36(18): 3608-3610. doi: 10.1364/ol.36.003608http://dx.doi.org/10.1364/ol.36.003608
ZHENG Z G, LI Y N, BISOYI H K, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light [J]. Nature, 2016, 531(7594): 352-356. doi: 10.1038/nature17141http://dx.doi.org/10.1038/nature17141
YANG C K, ZHANG H, LIU B, et al. Electrically tunable whispering gallery mode microresonator based on a grapefruit-microstructured optical fiber infiltrated with nematic liquid crystals [J]. Opt. Lett., 2017, 42(15): 2988-2991. doi: 10.1364/ol.42.002988http://dx.doi.org/10.1364/ol.42.002988
KONG F S, YANG B, YANG C K, et al. Electrically tuned whispering gallery mode microresonator based on Kagomé photonic crystal fibers infiltrated with nematic liquid crystals [J]. Appl. Opt., 2019, 58(6): 1351-1355. doi: 10.1364/ao.58.001351http://dx.doi.org/10.1364/ao.58.001351
梁昆淼. 数学物理方法[M]. 北京:高等教育出版社,2010:4.
LIANG K M. Mathematical Physical Method [M]. Beijing: Higher Education Press, 2010: 4. (in Chinese)
HOU L, CHEN S B, ZHOU X, et al. Saddle-splay elasticity induced chiral structures in achiral liquid crystals within cylindrical geometry [J]. Liq. Cryst., 2020, 47(6): 950-957. doi: 10.1080/02678292.2019.1692255http://dx.doi.org/10.1080/02678292.2019.1692255
VAN SPRANG H A, KOOPMAN H G. Experimental and calculated results for the dynamics of oriented nematics with twist angles from 210° to 270° [J]. J. Appl. Phys., 1988, 64(10): 4873-4883. doi: 10.1063/1.341236http://dx.doi.org/10.1063/1.341236
0
浏览量
90
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构