1.清华大学 化学系 有机光电子与分子工程教育部重点实验室, 北京 100084
[ "杨秀秀(1994—),女,安徽合肥人,博士研究生,2017年于大连理工大学获得学士学位,主要从事液晶传感器方面的研究。E-mail: yxx17@tsinghua.org.cn" ]
[ "田 艺(1990—),女,新疆阿克苏人,学士,2013年于华东理工大学获得学士学位,主要从事液晶传感器方面的研究。E-mail: crystal_yi_work@163.com" ]
[ "杨忠强(1979—),女,黑龙江鸡西人,博士,副教授,2007 年于英国剑桥大学获得博士学位,主要从事液晶材料成型加工及其在检测、人工肌肉和柔性机器人等领域的应用研究。E-mail:zyang@tsinghua. edu. cn" ]
扫 描 看 全 文
杨秀秀, 田艺, 杨忠强. 液晶液滴制备及其在生物检测领域的应用[J]. 液晶与显示, 2022,37(12):1531-1545.
YANG Xiu-xiu, TIAN Yi, YANG Zhong-qiang. Preparation of liquid crystal droplets and its application in biological detection[J]. Chinese Journal of Liquid Crystals and Displays, 2022,37(12):1531-1545.
杨秀秀, 田艺, 杨忠强. 液晶液滴制备及其在生物检测领域的应用[J]. 液晶与显示, 2022,37(12):1531-1545. DOI: 10.37188/CJLCD.2022-0215.
YANG Xiu-xiu, TIAN Yi, YANG Zhong-qiang. Preparation of liquid crystal droplets and its application in biological detection[J]. Chinese Journal of Liquid Crystals and Displays, 2022,37(12):1531-1545. DOI: 10.37188/CJLCD.2022-0215.
基于液晶液滴体系的生物传感器因其具有较高的检测灵敏度、特异的光学信号,在检测细菌、病毒、酶活性、蛋白质及生物分子相互作用等方面展现其独特优势。液晶液滴生物传感器性能与液晶液滴的尺寸、均一性及其界面的特异识别能力密切相关。因此,制备具有尺寸可控、界面化学可调的液晶液滴成为当前研究的重点。本文从液晶液滴的取向介绍出发,着重概述了近年来液晶液滴制备的研究进展及其在生物检测领域应用中的发展状况。同时介绍了液晶液滴复合材料的制备和液晶液滴的表面固定及其在生物传感中的应用,最后讨论了液晶液滴生物传感器目前遇到的瓶颈以及未来可能的研究方向。
Liquid crystal droplet biosensor has made remarkable progress in the biological detection field because of its high detection sensitivity and specific optical signal. Liquid crystal droplet has shown outstanding performance in detecting bacteria, viruses, enzymatic activity, proteins, and the interaction between biomolecules. As the performance of liquid crystal droplet biosensor is closely related to the size and uniformity of liquid crystal droplets as well as the specific recognition ability of the interface, the preparation of liquid crystal droplets with controllable size and adjustable interfacial chemistry has become the focus of current research. This review summarizes the research progress of liquid crystal droplet preparation and its application in the field of biological detection in recent years. First, this review introduces the orientation of liquid crystal droplets, then, summarizes the research progress of liquid crystal droplet preparation and its application in the field of biological detection in recent years. This review also introduces the preparation of liquid crystal droplet composites, the surface immobilization of liquid crystal droplets and their applications in biosensors. Finally, the bottlenecks encountered by liquid crystal droplet biosensors and the possible research directions in the future are discussed.
液晶液晶液滴生物传感器检测
liquid crystaldropletsbiosensordetection
KIM Y K, NOH J, NAYANI K, et al. Soft matter from liquid crystals [J]. Soft Matter, 2019, 15(35): 6913-6929. doi: 10.1039/c9sm01424ahttp://dx.doi.org/10.1039/c9sm01424a
GUPTA V K, SKAIFE J J, DUBROVSKY T B, et al. Optical amplification of ligand-receptor binding using liquid crystals [J]. Science, 1998, 279(5359): 2077-2080. doi: 10.1126/science.279.5359.2077http://dx.doi.org/10.1126/science.279.5359.2077
HUSSAIN A, PINA A S, ROQUE A C A. Bio-recognition and detection using liquid crystals [J]. Biosensors and Bioelectronics, 2009, 25(1): 1-8. doi: 10.1016/j.bios.2009.04.038http://dx.doi.org/10.1016/j.bios.2009.04.038
QU R X, GEORGE T F, LI G Q. Development in liquid crystal microcapsules: fabrication, optimization and applications [J]. Journal of Materials Chemistry C, 2022, 10(2): 413-432. doi: 10.1039/d1tc04395ahttp://dx.doi.org/10.1039/d1tc04395a
ZHANG X, XU Y Y, VALENZUELA C, et al. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence [J]. Light: Science & Applications, 2022, 11(1): 223. doi: 10.1038/s41377-022-00913-6http://dx.doi.org/10.1038/s41377-022-00913-6
LOCKWOOD N A, GUPTA J K, ABBOTT N L. Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases [J]. Surface Science Reports, 2008, 63(6): 255-293. doi: 10.1016/j.surfrep.2008.02.002http://dx.doi.org/10.1016/j.surfrep.2008.02.002
DONG Y C, YANG Z Q. Beyond displays: the recent progress of liquid crystals for bio/chemical detections [J]. Chinese Science Bulletin, 2013, 58(21): 2557-2562. doi: 10.1007/s11434-013-5767-5http://dx.doi.org/10.1007/s11434-013-5767-5
GUPTA J K, SIVAKUMAR S, CARUSO F, et al. Size-dependent ordering of liquid crystals observed in polymeric capsules with micrometer and smaller diameters [J]. Angewandte Chemie International Edition, 2009, 48(9): 1652-1655. doi: 10.1002/anie.200804500http://dx.doi.org/10.1002/anie.200804500
LIN I H, MILLER D S, BERTICS P J, et al. Endotoxin-induced structural transformations in liquid crystalline droplets [J]. Science, 2011, 332(6035): 1297-1300. doi: 10.1126/science.1195639http://dx.doi.org/10.1126/science.1195639
TJIPTO E, CADWELL K D, QUINN J F, et al. Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly [J]. Nano Letters, 2006, 6(10): 2243-2248. doi: 10.1021/nl061604phttp://dx.doi.org/10.1021/nl061604p
DENG J N, LU X Y, CONSTANT C, et al. Design of β-CD-surfactant complex-coated liquid crystal droplets for the detection of cholic acid via competitive host-guest recognition [J]. Chemical Communications, 2015, 51(43): 8912-8915. doi: 10.1039/c5cc01561hhttp://dx.doi.org/10.1039/c5cc01561h
YANG X X, LIANG X, NANDI R, et al. DNA-modified liquid crystal droplets [J]. Biosensors, 2022, 12(5): 275. doi: 10.3390/bios12050275http://dx.doi.org/10.3390/bios12050275
UMBANHOWAR P B, PRASAD V, WEITZ D A. Monodisperse emulsion generation via drop break off in a coflowing stream [J]. Langmuir, 2000, 16(2): 347-351. doi: 10.1021/la990101ehttp://dx.doi.org/10.1021/la990101e
KHAN W, CHOI J H, KIM G M, et al. Microfluidic formation of pH responsive 5CB droplets decorated with PAA-b-LCP [J]. Lab on A Chip, 2011, 11(20): 3493-3498. doi: 10.1039/c1lc20402ehttp://dx.doi.org/10.1039/c1lc20402e
DENG J N, HAN D D, YANG J. Applications of microfluidics in liquid crystal-based biosensors [J]. Biosensors, 2021, 11(10): 385. doi: 10.3390/bios11100385http://dx.doi.org/10.3390/bios11100385
SIVAKUMAR S, GUPTA J K, ABBOTT N L, et al. Monodisperse emulsions through templating polyelectrolyte multilayer capsules [J]. Chemistry of Materials, 2008, 20(6): 2063-2065. doi: 10.1021/cm703237ahttp://dx.doi.org/10.1021/cm703237a
LI Y, MEI R A, YANG Z Q. A facile method for preparation of emulsion using the high gravity technique [J]. Journal of Colloid and Interface Science, 2017, 506: 120-125. doi: 10.1016/j.jcis.2017.06.035http://dx.doi.org/10.1016/j.jcis.2017.06.035
WANG Z Y H, XU T H, NOEL A, et al. Applications of liquid crystals in biosensing [J]. Soft Matter, 2021, 17(18): 4675-4702. doi: 10.1039/d0sm02088ehttp://dx.doi.org/10.1039/d0sm02088e
SIVAKUMAR S, WARK K L, GUPTA J K, et al. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses [J]. Advanced Functional Materials, 2009, 19(14): 2260-2265. doi: 10.1002/adfm.200900399http://dx.doi.org/10.1002/adfm.200900399
ORTIZ B J, BOURSIER M E, BARRETT K L, et al. Liquid crystal emulsions that intercept and report on bacterial quorum sensing [J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29056-29065.
BRAKE J M, ABBOTT N L. Coupling of the orientations of thermotropic liquid crystals to protein binding events at lipid-decorated interfaces [J]. Langmuir, 2007, 23(16): 8497-8507. doi: 10.1021/la0634286http://dx.doi.org/10.1021/la0634286
ALIÑO V J, PANG J, YANG K L. Liquid crystal droplets as a hosting and sensing platform for developing immunoassays [J]. Langmuir, 2011, 27(19): 11784-11789. doi: 10.1021/la2022215http://dx.doi.org/10.1021/la2022215
VERMA I, PANI I, SHARMA D, et al. Label-free imaging of fibronectin adsorption at Poly-(L-lysine)-decorated liquid crystal droplets [J]. The Journal of Physical Chemistry C, 2019, 123(22): 13642-13650. doi: 10.1021/acs.jpcc.9b01934http://dx.doi.org/10.1021/acs.jpcc.9b01934
COHEN J. The immunopathogenesis of sepsis [J]. Nature, 2002, 420(6917): 885-891. doi: 10.1038/nature01326http://dx.doi.org/10.1038/nature01326
JIANG S L, NOH J H, PARK C, et al. Using machine learning and liquid crystal droplets to identify and quantify endotoxins from different bacterial species [J]. Analyst, 2021, 146(4): 1224-1233. doi: 10.1039/d0an02220ahttp://dx.doi.org/10.1039/d0an02220a
张亚倩,崔永丰,王浩,等.基于卷积神经网络的高通量蓝相液晶识别[J].液晶与显示,2022,37(8):972-979. doi: 10.37188/CJLCD.2021-0315http://dx.doi.org/10.37188/CJLCD.2021-0315
ZHANG Y Q, CUI Y F, WANG H, et al. High-throughput blue phase liquid crystal recognition based on convolutional neural network [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(8): 972-979. (in Chinese). doi: 10.37188/CJLCD.2021-0315http://dx.doi.org/10.37188/CJLCD.2021-0315
YANG X X, ZHAO X F, ZHAO H S, et al. Combination of liquid crystal and deep learning reveals distinct signatures of Parkinson's disease-related wild-type α-synuclein and six pathogenic mutants [J]. Chemistry-An Asian Journal, 2022, 17(2): e202101251. doi: 10.1002/asia.202101251http://dx.doi.org/10.1002/asia.202101251
GUPTA J K, ZIMMERMAN J S, DE PABLO J J, et al. Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets [J]. Langmuir, 2009, 25(16): 9016-9024. doi: 10.1021/la900786bhttp://dx.doi.org/10.1021/la900786b
CHANG C Y, CHEN C H. Oligopeptide-decorated liquid crystal droplets for detecting proteases [J]. Chemical Communications, 2014, 50(81): 12162-12165. doi: 10.1039/c4cc04651jhttp://dx.doi.org/10.1039/c4cc04651j
YANG X X, TIAN Y, LI F Y, et al. Investigation of the assembly behavior of an amphiphilic lipopeptide at the liquid crystal-aqueous interface [J]. Langmuir, 2019, 35(7): 2490-2497. doi: 10.1021/acs.langmuir.8b03294http://dx.doi.org/10.1021/acs.langmuir.8b03294
MA C D, ADAMIAK L, MILLER D S, et al. Liquid crystal interfaces programmed with enzyme-responsive polymers and surfactants [J]. Small, 2015, 11(43): 5747-5751. doi: 10.1002/smll.201502137http://dx.doi.org/10.1002/smll.201502137
WANG Y, ZHAO L Y, XU A J, et al. Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor [J]. Sensors and Actuators B: Chemical, 2018, 258: 1090-1098. doi: 10.1016/j.snb.2017.12.012http://dx.doi.org/10.1016/j.snb.2017.12.012
LEE K, SHIN H, GUPTA K C, et al. In vitro dual detection of GNPs conjugated rabbit IgG using anti-IgG anchored calcein green fluorescent LC microdroplets [J]. IEEE Sensors Journal, 2018, 18(20): 8208-8214.
LEE K, GUPTA K C, PARK S Y, et al. Anti-IgG-anchored liquid crystal microdroplets for label free detection of IgG [J]. Journal of Materials Chemistry B, 2016, 4(4): 704-715. doi: 10.1039/c5tb02131fhttp://dx.doi.org/10.1039/c5tb02131f
KHAN M, PARK S Y. Specific detection of avidin-biotin binding using liquid crystal droplets [J]. Colloids and Surfaces B: Biointerfaces, 2015, 127: 241-246. doi: 10.1016/j.colsurfb.2015.01.047http://dx.doi.org/10.1016/j.colsurfb.2015.01.047
PANI I, FIDHA N K M, SHARMA M, et al. Probing nanoscale lipid-protein interactions at the interface of liquid crystal droplets [J]. Nano Letters, 2021, 21(11): 4546-4553. doi: 10.1021/acs.nanolett.0c05139http://dx.doi.org/10.1021/acs.nanolett.0c05139
MANNA U, ZAYAS-GONZALEZ Y M, CARLTON R J, et al. Liquid crystal chemical sensors that cells can wear [J]. Angewandte Chemie International Edition, 2013, 52(52): 14011-14015. doi: 10.1002/anie.201306630http://dx.doi.org/10.1002/anie.201306630
KHAN M, LI W W, MAO S F, et al. Real-time imaging of ammonia release from single live cells via liquid crystal droplets immobilized on the cell membrane [J]. Advanced Science, 2019, 6(20): 1900778. doi: 10.1002/advs.201900778http://dx.doi.org/10.1002/advs.201900778
MANNA U, ZAVALA Y M, ABBOTT N L, et al. Structured liquid droplets as chemical sensors that function inside living cells [J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42502-42512. doi: 10.1021/acsami.1c12667http://dx.doi.org/10.1021/acsami.1c12667
VERMA I, SIDIQ S, PAL S K. Poly(L-lysine)-coated liquid crystal droplets for sensitive detection of DNA and their applications in controlled release of drug molecules [J]. ACS Omega, 2017, 2(11): 7936-7945. doi: 10.1021/acsomega.7b01175http://dx.doi.org/10.1021/acsomega.7b01175
YOO H, JO H, OH S S. Detection and beyond: challenges and advances in aptamer-based biosensors [J]. Materials Advances, 2020, 1(8): 2663-2687. doi: 10.1039/d0ma00639dhttp://dx.doi.org/10.1039/d0ma00639d
YU H X, ALKHAMIS O, CANOURA J, et al. Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development [J]. Angewandte Chemie International Edition, 2021, 60(31): 16800-16823. doi: 10.1002/anie.202008663http://dx.doi.org/10.1002/anie.202008663
KIM J, KHAN M, PARK S Y. Glucose sensor using liquid-crystal droplets made by microfluidics [J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13135-13139. doi: 10.1021/am404174nhttp://dx.doi.org/10.1021/am404174n
WANG Y, HU Q Z, TIAN T T, et al. Simple and sensitive detection of pesticides using the liquid crystal droplet patterns platform [J]. Sensors and Actuators B: Chemical, 2017, 238: 676-682. doi: 10.1016/j.snb.2016.07.114http://dx.doi.org/10.1016/j.snb.2016.07.114
ZHOU L L, HU Q Z, KANG Q, et al. Construction of liquid crystal droplet-based sensing platform for sensitive detection of organophosphate pesticide [J]. Talanta, 2018, 190: 375-381. doi: 10.1016/j.talanta.2018.08.014http://dx.doi.org/10.1016/j.talanta.2018.08.014
GOLLAPELLI B, TATIPAMULA A K, DEWANJEE S, et al. Detection of bile acids using optical biosensors based on cholesteric liquid crystal droplets [J]. Journal of Materials Chemistry C, 2021, 9(39): 13991-14002. doi: 10.1039/d1tc02801dhttp://dx.doi.org/10.1039/d1tc02801d
NIU X F, LUO D, CHEN R, et al. Optical biosensor based on liquid crystal droplets for detection of cholic acid [J]. Optics Communications, 2016, 381: 286-291. doi: 10.1016/j.optcom.2016.07.016http://dx.doi.org/10.1016/j.optcom.2016.07.016
DUAN R, LI Y Z, SHI B J, et al. Real-time, quantitative and sensitive detection of urea by whispering gallery mode lasing in liquid crystal microdroplet [J]. Talanta, 2020, 209: 120513. doi: 10.1016/j.talanta.2019.120513http://dx.doi.org/10.1016/j.talanta.2019.120513
DENG J N, LIANG W L, FANG J Y. Liquid crystal droplet-embedded biopolymer hydrogel sheets for biosensor applications [J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3928-3932. doi: 10.1021/acsami.5b11076http://dx.doi.org/10.1021/acsami.5b11076
KINSINGER M I, BUCK M E, ABBOTT N L, et al. Immobilization of polymer-decorated liquid crystal droplets on chemically tailored surfaces [J]. Langmuir, 2010, 26(12): 10234-10242. doi: 10.1021/la100376uhttp://dx.doi.org/10.1021/la100376u
GUO X R, MANNA U, ABBOTT N L, et al. Covalent immobilization of caged liquid crystal microdroplets on surfaces [J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26892-26903. doi: 10.1021/acsami.5b09595http://dx.doi.org/10.1021/acsami.5b09595
0
浏览量
185
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构