
浏览全部资源
扫码关注微信
1.东华理工大学 地球科学学院, 江西 南昌 330013
2.东华理工大学 网络与信息中心, 江西 南昌 330013
3.东华理工大学 信息工程学院, 江西 南昌 330013
4.江西省数字国土重点实验室, 江西 南昌 330013
5.江西省放射性地学大数据技术工程实验室, 江西 南昌 330013
6.核资源与环境国家重点实验室, 江西 南昌 330013
7.中国科学院 古脊椎动物与古人类研究所, 北京 100044
[ "陈春玉(1997—),女,四川成都人,硕士研究生,2019年于内江师范学院获得学士学位,主要从事数字图像处理与三维地质建模方面的研究。E-mail:1002075910@qq.com。" ]
[ "黄映聪(1979—),男,四川宜宾人,博士,高级工程师,2009年于吉林大学获得博士学位,主要从事遥感图像语义识别与地学人工智能方面的研究。E-mail:5828516@qq.com" ]
收稿日期:2021-12-27,
修回日期:2022-02-08,
纸质出版日期:2022-07-05
移动端阅览
陈春玉, 黄映聪, 王强, 等. 基于信息熵的CT图像目标自动提取实验研究以恐龙蛋壳化石切片CT图像为例[J]. 液晶与显示, 2022,37(7):891-899.
Chun-yu CHEN, Ying-cong HUANG, Qiang WANG, et al. Experimental research on automatic object extraction from CT image based on information entropy—taking CT image of dinosaur eggshell slices as an example—taking CT image of dinosaur eggshell slices as an example[J]. Chinese journal of liquid crystals and displays, 2022, 37(7): 891-899.
陈春玉, 黄映聪, 王强, 等. 基于信息熵的CT图像目标自动提取实验研究以恐龙蛋壳化石切片CT图像为例[J]. 液晶与显示, 2022,37(7):891-899. DOI: 10.37188/CJLCD.2021-0343.
Chun-yu CHEN, Ying-cong HUANG, Qiang WANG, et al. Experimental research on automatic object extraction from CT image based on information entropy—taking CT image of dinosaur eggshell slices as an example—taking CT image of dinosaur eggshell slices as an example[J]. Chinese journal of liquid crystals and displays, 2022, 37(7): 891-899. DOI: 10.37188/CJLCD.2021-0343.
以恐龙蛋为对象,针对大量恐龙蛋壳化石CT图像目标与背景的分离需求,以及传统提取方法繁琐、精确度不高且需要较多人工参与,不能实现完全自动化等问题,提出了一种基于信息熵的CT图像目标自动分离提取方法。首先手动训练样本信息熵参数,将其作为自动分离大量CT图像的参数;再根据灰度图像亮度直方图确定分割阈值;然后基于信息熵算法进行自动分离;最后依据分割阈值和信息熵值,实现目标区域的最终分离和提取。该方法获得了良好的分离提取效果,所获分割阈值范围为66~188,信息熵值范围为0.43~0.65。基于3 329张16位恐龙蛋壳原始切片CT图像样品数据所进行的评价实验表明,对于数量较多的CT图像,所提出的方法自动分离提取具有很高的效率,可达到98.89%,并且能在正确提取出目标方解石的同时保留较为完整的目标与边缘细节,分离处理的准确性和快速性良好。
Taking dinosaur eggs as the object, a method of automatic object separation and extraction of CT images based on information entropy is proposed in view of the separation demand of many dinosaur eggshell fossil CT images with target and background, as well as the present situation of cumbersome, low accuracy, requiring more manual participation, and unable to achieve complete automation,
etc.
Firstly, the sample information entropy parameters are manually trained and used as the parameters for automatic separation of a large number of CT images. Secondly, the segmentation threshold is determined according to the brightness histogram of gray image. Then,the automatic separation is performed based on information entropy algorithm. Finally, according to the segmentation threshold and information entropy value, the final separation and extraction of the target region is realized. The method achieves good separation and extraction results, the segmentation threshold range is 66~188, and the information entropy range is 0.43~0.65.Evaluation experiments based on 3 329 CT images of original slices of 16-position dinosaur eggshells show that this method has a high efficiency of automatic separation and extraction for a large number of CT images, up to 98.89%. In addition, the calcite of the target can be extracted correctly while retaining more complete target and edge details,and the separation process is accurate and fast.
高丽娜 , 陈文革 . CT技术的应用发展及前景 [J]. CT理论与应用研究 , 2009 , 18 ( 1 ): 99 - 109 .
GAO L N , CHEN W G . The application and prospect of CT [J]. Computerized Tomography Theory and Applications , 2009 , 18 ( 1 ): 99 - 109 . (in Chinese)
YEN J C , CHANG F J , CHANG S . A new criterion for automatic multilevel thresholding [J]. IEEE Transactions on Image Processing , 1995 , 4 ( 3 ): 370 - 378 . doi: 10.1109/83.366472 http://dx.doi.org/10.1109/83.366472
YANG P , SONG W , ZHAO X B , et al . An improved Otsu threshold segmentation algorithm [J]. International Journal of Computational Science and Engineering , 2020 , 22 ( 1 ): 146 - 153 . doi: 10.1504/ijcse.2020.10029225 http://dx.doi.org/10.1504/ijcse.2020.10029225
ZHANG K L , LU W M , MARZILIANO P . Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies [J]. Magnetic Resonance Imaging , 2013 , 31 ( 10 ): 1731 - 1743 . doi: 10.1016/j.mri.2013.06.005 http://dx.doi.org/10.1016/j.mri.2013.06.005
SHELHAMER E , LONG J , DARRELL T . Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2017 , 39 ( 4 ): 640 - 651 . doi: 10.1109/tpami.2016.2572683 http://dx.doi.org/10.1109/tpami.2016.2572683
任志淼 . 基于全卷积神经网络和动态自适应区域生长法的红外图像目标分割方法 [J]. 半导体光电 , 2019 , 40 ( 4 ): 564 - 570 .
REN Z M . Infrared image target segmentation algorithm based on full convolutional neural network and dynamic adaptive region growth [J]. Semiconductor Optoelectronics , 2019 , 40 ( 4 ): 564 - 570 . (in Chinese)
翟伟明 , 胡成文 , 张伟宏 , 等 . 基于动态自适应体素生长的肺部CT图像3维分割算法 [J]. 中国图象图形学报 , 2005 , 10 ( 10 ): 1269 - 1274 .
ZHAI W M , HU C W , ZHANG W H , et al . A dynamic adaptive 3D voxel-growing segmentation algorithm for pulmonary CT images [J]. Journal of Image and Graphics , 2005 , 10 ( 10 ): 1269 - 1274 . (in Chinese)
宋红 , 王勇 , 黄小川 , 等 . 基于动态自适应区域生长的肝脏CT图像肿瘤分割算法 [J]. 北京理工大学学报 , 2014 , 34 ( 1 ): 72 - 76 .
SONG H , WANG Y , HUANG X C , et al . A dynamic adaptive region growing segmentation algorithm for tumor of liver CT images [J]. Transactions of Beijing Institute of Technology , 2014 , 34 ( 1 ): 72 - 76 . (in Chinese)
张丽娟 , 章润 , 李东明 , 等 . 区域生长全卷积神经网络交互分割肝脏CT图像 [J]. 液晶与显示 , 2021 , 36 ( 9 ): 1294 - 1304 . doi: 10.37188/CJLCD.2020-0338 http://dx.doi.org/10.37188/CJLCD.2020-0338
ZHANG L J , ZHANG R , LI D M , et al . Region-growing fully convolutional neural network interactive segmentation of liver CT images [J]. Chinese Journal of Liquid Crystals and Displays , 2021 , 36 ( 9 ): 1294 - 1304 . (in Chinese) . doi: 10.37188/CJLCD.2020-0338 http://dx.doi.org/10.37188/CJLCD.2020-0338
FILHO P P R , CORTEZ P C , SILVA BARROS A CDA , et al . Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images [J]. Medical Image Analysis , 2017 , 35 : 503 - 516 . doi: 10.1016/j.media.2016.09.002 http://dx.doi.org/10.1016/j.media.2016.09.002
MEN K , CHEN X Y , ZHANG Y , et al . Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images [J]. Frontiers in Oncology , 2017 , 7 : 315 . doi: 10.3389/fonc.2017.00315 http://dx.doi.org/10.3389/fonc.2017.00315
ATHERTYA J S , KUMAR G S . Automatic segmentation of vertebral contours from CT images using fuzzy corners [J]. Computers in Biology and Medicine , 2016 , 72 : 75 - 89 . doi: 10.1016/j.compbiomed.2016.03.009 http://dx.doi.org/10.1016/j.compbiomed.2016.03.009
VANIA M , MUREJA D , LEE D . Automatic spine segmentation from CT images using convolutional neural network via redundant generation of class labels [J]. Journal of Computational Design and Engineering , 2019 , 6 ( 2 ): 224 - 232 . doi: 10.1016/j.jcde.2018.05.002 http://dx.doi.org/10.1016/j.jcde.2018.05.002
YU C Y , JIANGZUO Q G , TSCHOPP E , et al . Information in morphological characters [J]. Ecology and Evolution , 2021 , 11 ( 17 ): 11689 - 11699 . doi: 10.1002/ece3.7874 http://dx.doi.org/10.1002/ece3.7874
刘学林 . 一种提高影像信息熵的图像预处理方法 [J]. 测绘与空间地理信息 , 2016 , 39 ( 7 ): 21 - 23,26 . doi: 10.3969/j.issn.1672-5867.2016.07.006 http://dx.doi.org/10.3969/j.issn.1672-5867.2016.07.006
LIU X L . One method of image pretreatment to increase image's information entropy [J]. Geomatics & Spatial Information Technology , 2016 , 39 ( 7 ): 21 - 23, 26 . (in Chinese) . doi: 10.3969/j.issn.1672-5867.2016.07.006 http://dx.doi.org/10.3969/j.issn.1672-5867.2016.07.006
张玉娟 , 李城林 , 钟浩 , 等 . 基于信息熵和细节方差均值与背景方差均值比的无参考图像锐化结果评价 [J]. 哈尔滨师范大学自然科学学报 , 2019 , 35 ( 1 ): 36 - 40 . doi: 10.3969/j.issn.1000-5617.2019.01.007 http://dx.doi.org/10.3969/j.issn.1000-5617.2019.01.007
ZHANG Y J , LI C L , ZHONG H , et al . Evaluation of no-reference image sharpening results based on information entropy and the ratio of detail variance mean to background variance mean [J]. Natural Science Journal of Harbin Normal University , 2019 , 35 ( 1 ): 36 - 40 . (in Chinese) . doi: 10.3969/j.issn.1000-5617.2019.01.007 http://dx.doi.org/10.3969/j.issn.1000-5617.2019.01.007
童先群 , 周忠眉 . 基于属性值信息熵的KNN改进算法 [J]. 计算机工程与应用 , 2010 , 46 ( 3 ): 115 - 117 . doi: 10.3778/j.issn.1002-8331.2010.03.034 http://dx.doi.org/10.3778/j.issn.1002-8331.2010.03.034
TONG X Q , ZHOU Z M . Enhancement of K-nearest neighbor algorithm based on information entropy of attribute value [J]. Computer Engineering and Applications , 2010 , 46 ( 3 ): 115 - 117 . (in Chinese) . doi: 10.3778/j.issn.1002-8331.2010.03.034 http://dx.doi.org/10.3778/j.issn.1002-8331.2010.03.034
GAO J B , LIU F Y , ZHANG J F , et al . Information entropy as a basic building block of complexity theory [J]. Entropy , 2013 , 15 ( 9 ): 3396 - 3418 . doi: 10.3390/e15093396 http://dx.doi.org/10.3390/e15093396
CHU C W , BELAVÝ D L , ARMBRECHT G , et al . Fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images via a learning-based method [J]. PLoS One , 2015 , 10 ( 11 ): e143327 . doi: 10.1371/journal.pone.0143327 http://dx.doi.org/10.1371/journal.pone.0143327
0
浏览量
309
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621