1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100049
3.吉林省智能波前传感与控制重点实验室, 吉林 长春 130033
4.中国科学院 苏州生物医学工程技术研究所, 江苏 苏州 215163
5.济南国科医工科技发展有限公司, 山东 济南 250102
[ "王廷煜(1998—),男,四川眉山人,硕士研究生,2021年于哈尔滨工业大学获得学士学位,主要从事大口径光学自由曲面检测方面的研究。E-mail:wangtingyu21@mails.ucas.ac.cn" ]
[ "王之一(1996—),男,吉林长春人,博士研究生,2018年于山东大学获得学士学位,主要从事大口径光学自由曲面精密检测、非接触式光学探针测量等方面的研究。E-mail:wangzhiyi18@mails.ucas.edu.cn" ]
[ "王建立(1971—),男,山东曲阜人,博士,研究员,2002年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事地基空间目标光学探测技术、光电精密跟踪控制技术、光电精密测量误差补偿技术、大口径望远镜总体技术、大型军用光电系统总体集成技术等方面的研究。E-mail:wangjianli@ciomp.ac.cn" ]
扫 描 看 全 文
王廷煜, 王之一, 杨永强, 等. 基于差动共焦的倾角测量传感器[J]. 液晶与显示, 2023,38(11):1481-1489.
WANG Ting-yu, WANG Zhi-yi, YANG Yong-qiang, et al. Tilt sensor based on differential confocal microscope[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(11):1481-1489.
王廷煜, 王之一, 杨永强, 等. 基于差动共焦的倾角测量传感器[J]. 液晶与显示, 2023,38(11):1481-1489. DOI: 10.37188/CJLCD.2023-0045.
WANG Ting-yu, WANG Zhi-yi, YANG Yong-qiang, et al. Tilt sensor based on differential confocal microscope[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(11):1481-1489. DOI: 10.37188/CJLCD.2023-0045.
为了解决传统激光差动共焦显微镜(LDCM)无法在测距的同时,进行高精度倾斜角度测量的问题,提出了一种基于差动共焦的倾角测量传感器。在对倾斜表面进行测量时,该传感器首先利用轴向扫描获取的差动响应信号精准定位其焦点位置,然后分析显微镜光瞳面场强分布并提取光斑图像的峰值位置,从而实现对倾角的精准测量。首先,建立聚焦光束经倾斜待测面反射后的光场分布模型,对不同倾斜角度下显微镜光瞳面的场强分布情况进行分析。然后,在分析倾斜光斑特征的基础上,提出了采用改进Meanshift算法进行光斑峰值位置提取的方法。最后,通过实验验证了传感器对倾角测量的有效性。实验结果表明,传感器对倾斜程度(0~8°)测量平均误差为0.011°,对倾斜方向(0~360°)的测量平均误差为0.128°,能够满足利用差动共焦非接触光学探针对三维表面进行检测的过程中,对待测表面倾斜角度测量的要求。该传感器为自由曲面的高精度轮廓测量提供了一种新的方法。
In order to solve the problem that traditional laser differential confocal microscope(LDCM) can not measure the angle of tilt with high precision while measuring the distance, a kind of angle measurement sensor based on LDCM was proposed. When measuring the inclined surface, the sensor first uses the differential response signal obtained by axial scanning to accurately locate the focal position, and then analyzes the pupil field intensity distribution of the microscope and extracts the peak position of the spot image, so as to achieve the accurate measurement of the inclination. First, the field distribution model of the focused beam reflected by the tilted surface to be measured was established, and the field intensity distribution in the pupil plane of the microscope was analyzed at different tilt angles. Then, on the basis of analyzing the characteristics of slanting spot, a method of extracting the peak position of spot using improved Meanshift algorithm is proposed. Finally, the effectiveness of the sensor for tilt angle measurement is verified by experiments. The experimental results show that the average error of the sensor is 0.011° for the tilt degree (0°~8°) and 0.128° for the tilt direction (0°~360°), which can meet the requirements of measuring tilt angle of measuring surface in the process of detecting three-dimensional surface by using LDCM. The sensor provides a new method for high precision contour measurement of free-form surface.
非接触光学探针差动共焦三维检测倾斜测量峰值提取
non-contact optical probedifferential confocal3D detectiontilt measurementpeak extraction
DUERR F, THIENPONT H. Freeform imaging systems: Fermat’s principle unlocks “first time right” design [J]. Light: Science & Applications, 2021, 10(1): 95. doi: 10.1038/s41377-021-00538-1http://dx.doi.org/10.1038/s41377-021-00538-1
FALAGGIS K, ROLLAND J, DUERR F, et al. Freeform optics: introduction [J]. Optics Express, 2022, 30(4): 6450-6455. doi: 10.1364/oe.454788http://dx.doi.org/10.1364/oe.454788
WEI L D, LI Y C, JING J J, et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface [J]. Optics Express, 2018, 26(7): 8550-8565. doi: 10.1364/oe.26.008550http://dx.doi.org/10.1364/oe.26.008550
REIMERS J, BAUER A, THOMPSON K P, et al. Freeform spectrometer enabling increased compactness [J]. Light: Science & Applications, 2017, 6(7): e17026. doi: 10.1038/lsa.2017.26http://dx.doi.org/10.1038/lsa.2017.26
WANG Z Y, WANG T Y, YANG Y Q, et al. Precise two-dimensional tilt measurement sensor with double-cylindrical mirror structure and modified Mean-shift algorithm for a confocal microscopy system [J]. Sensors, 2022, 22(18): 6794. doi: 10.3390/s22186794http://dx.doi.org/10.3390/s22186794
ZHOU H W, HUSSAIN M M R, BANERJEE P P. A review of the dual-wavelength technique for phase imaging and 3D topography [J]. Light: Advanced Manufacturing, 2022, 3(2): 314-334. doi: 10.37188/lam.2022.017http://dx.doi.org/10.37188/lam.2022.017
朱日宏,孙越,沈华. 光学自由曲面面形检测方法进展与展望[J]. 光学学报,2021,41(1):0112001. doi: 10.3788/aos202141.0112001http://dx.doi.org/10.3788/aos202141.0112001
ZHU R H, SUN Y, SHEN H. Progress and prospect of optical freeform surface measurement [J]. Acta Optica Sinica, 2021, 41(1): 0112001. (in Chinese). doi: 10.3788/aos202141.0112001http://dx.doi.org/10.3788/aos202141.0112001
KIM M K. Phase microscopy and surface profilometry by digital holography [J]. Light: Advanced Manufacturing, 2022, 3(3): 481-492. doi: 10.37188/lam.2022.019http://dx.doi.org/10.37188/lam.2022.019
王富生,谭久彬. 差动共焦式纳米级光聚焦探测系统的研究[J]. 光学技术,2001,27(3):232-234. doi: 10.3321/j.issn:1002-1582.2001.03.012http://dx.doi.org/10.3321/j.issn:1002-1582.2001.03.012
WANG F S, TAN J B. Optical focus detection system with nanometer resolution using differential confocal microscope [J]. Optical Technique, 2001, 27(3): 232-234. (in Chinese). doi: 10.3321/j.issn:1002-1582.2001.03.012http://dx.doi.org/10.3321/j.issn:1002-1582.2001.03.012
KIM C S, YOO H. Three-dimensional confocal reflectance microscopy for surface metrology [J]. Measurement Science and Technology, 2021, 32(10): 102002. doi: 10.1088/1361-6501/ac04dfhttp://dx.doi.org/10.1088/1361-6501/ac04df
LI J X, GARFINKEL J, ZHANG X R, et al. Biopsy-free in vivo virtual histology of skin using deep learning [J]. Light: Science & Applications, 2021, 10(1): 233. doi: 10.1038/s41377-021-00674-8http://dx.doi.org/10.1038/s41377-021-00674-8
YUSUF K, EDI P, RADZI A, et al. Shape reconstruction of specular surface using normal vectors [C]//Proceedings of the 2nd WSEAS International Conference on Engineering Mechanics, Structures and Engineering Geology. Rhodes, Greece: WSEAS, 2009: 275-279.
PAN R J, MENG X X, WHANGBO T. Hermite variational implicit surface reconstruction [J]. Science in China Series F: Information Sciences, 2009, 52(2): 308-315. doi: 10.1007/s11432-009-0032-xhttp://dx.doi.org/10.1007/s11432-009-0032-x
HÄUSLER G, RICHTER C, LEITZ K H, et al. Microdeflectometry—a novel tool to acquire three-dimensional microtopography with nanometer height resolution [J]. Optics Letters, 2008, 33(4): 396-398. doi: 10.1364/ol.33.000396http://dx.doi.org/10.1364/ol.33.000396
WU G W, CHEN L C. Precise 3-D microscopic profilometry using diffractive image microscopy and artificial neural network in single-exposure manner [J]. Optics and Lasers in Engineering, 2021, 147: 106732. doi: 10.1016/j.optlaseng.2021.106732http://dx.doi.org/10.1016/j.optlaseng.2021.106732
PRIBOŠEK J, DIACI J, SINZINGER S. Aperture-coded confocal profilometry [J]. Optics Letters, 2016, 41(23): 5523-5526. doi: 10.1364/ol.41.005523http://dx.doi.org/10.1364/ol.41.005523
SHENG Z, WANG Y, ZHAO W Q, et al. Laser differential fitting confocal microscopy with high imaging efficiency [J]. Applied Optics, 2016, 55(25): 6903-6909. doi: 10.1364/ao.55.006903http://dx.doi.org/10.1364/ao.55.006903
朱鸿. 光谱共焦位移传感器信号处理与校准研究[D]. 武汉:华中科技大学,2019. doi: 10.30919/esmm5f615http://dx.doi.org/10.30919/esmm5f615
ZHU H. Research on signal processing and calibration of spectral confocal displacement sensor [D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese). doi: 10.30919/esmm5f615http://dx.doi.org/10.30919/esmm5f615
王田,刘伟宁,韩广良,等.基于改进MeanShift的目标跟踪算法[J].液晶与显示,2012,27(3):396-400. doi: 10.3788/yjyxs20122703.0396http://dx.doi.org/10.3788/yjyxs20122703.0396
WANG T, LIU W N, HAN G L, et al. Target tracking algorithm based on improved MeanShift [J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(3): 396-400. (in Chinese). doi: 10.3788/yjyxs20122703.0396http://dx.doi.org/10.3788/yjyxs20122703.0396
FERNÁNDEZ-DUQUE B, PÉREZ I A, GARCÍA M Á, et al. Annual and seasonal cycles of CO2 and CH4 in a Mediterranean Spanish environment using different kernel functions [J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(3): 915-930. doi: 10.1007/s00477-019-01655-5http://dx.doi.org/10.1007/s00477-019-01655-5
0
浏览量
21
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构