1.三峡大学 水电工程智能视觉监测湖北省重点实验室, 湖北 宜昌 443002
2.三峡大学 计算机与信息学院, 湖北 宜昌 443002
[ "黄聪(1998—),男,湖南岳阳人,硕士研究生,2016年于延安大学获得学士学位,主要从事数字图像处理方面的研究。E-mail:huangcong_1998@163.com" ]
[ "邹耀斌(1978—),男,江西鹰潭人,博士,副教授,2011年于华中科技大学获得博士学位,主要从事数字图像处理和机器学习方面的研究。E-mail:zyb@ ctgu.edu.cn" ]
扫 描 看 全 文
黄聪, 邹耀斌. 快速二维累积剩余Tsallis熵阈值分割方法[J]. 液晶与显示, 2023,38(11):1600-1614.
HUANG Cong, ZOU Yao-bin. Fast 2D cumulative residual Tsallis entropy threshold segmentation method[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(11):1600-1614.
黄聪, 邹耀斌. 快速二维累积剩余Tsallis熵阈值分割方法[J]. 液晶与显示, 2023,38(11):1600-1614. DOI: 10.37188/CJLCD.2022-0427.
HUANG Cong, ZOU Yao-bin. Fast 2D cumulative residual Tsallis entropy threshold segmentation method[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(11):1600-1614. DOI: 10.37188/CJLCD.2022-0427.
对灰度直方图呈现为双峰的图像,传统的二维直方图阈值分割方法虽然比较有效,但在灰度直方图呈现为无峰、单峰或多峰模式时,它们的分割结果较差。考虑到经过二维直方图映射得到的二维生存函数存在密度连续和形态统一等优点,本文基于图像二维生存函数提出一种快速二维累积剩余Tsallis熵阈值分割方法。该方法首先基于二维直方图构造二维生存函数,然后在二维生存函数的基础上定义计算分割阈值的二维累积剩余Tsallis熵目标函数。通过递推算法将计算目标函数的时间复杂度降为,,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49590067&type=,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49590056&type=,8.80533314,3.21733332,。最后,基于递推形式的二维累积剩余Tsallis熵准则得到最优阈值向量以进行阈值分割。在26幅合成图像和76幅真实世界图像上将提出的方法与2种快速二维阈值分割方法、2种聚类分割方法以及1种活动轮廓分割方法分别在时间和误分类率(Misclassification Error,ME)2个指标下进行了比较。实验结果表明,在合成图像和真实世界图像中,相比于性能第2的方法,本文方法的时间平均缩短0.013 s,ME值平均降低0.051~0.089。提出的快速二维累积剩余Tsallis熵阈值分割方法不仅在计算效率方面优于对比的5种方法,而且在分割适应性和分割精度方面具有明显优势。
For images with bimodal gray-level histogram, the traditional two-dimensional histogram threshold segmentation method is more effective, but when gray-level histogram is non-peak, unimodal or multimodal, their segmentation results are poor. Considering that the two-dimensional survival function obtained by two-dimensional histogram mapping has the advantages of continuous density and uniform morphology, a fast two-dimensional cumulative residual Tsallis entropy threshold segmentation method is proposed based on the two-dimensional survival function of images. The method firstly constructs a two-dimensional survival function based on the two-dimensional histogram, and then a two-dimensional cumulative residual Tsallis entropy objective function is defined to compute the segmentation threshold on the basis of the two-dimensional survival function. Further, a recursive algorithm is used to reduce time complexity of calculating the objective function to ,,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49590421&type=,https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49590411&type=,10.15999985,3.80999994,. Finally, based on the two-dimensional cumulative residual Tsallis entropy criterion in recursive form, an optimal threshold vector is obtained for threshold segmentation. In 26 synthetic images and 76 real-world images, the proposed method is compared with two fast two-dimensional threshold segmentation methods, two clustering segmentation methods and one active contour segmentation method respectively under two indicators of time and misclassification error (ME). Experimental results show that the time is shortened by 0.013 s, and ME value is reduced by 0.051~0.089 on average in comparison with the method of performance 2 in both synthetic and real-world images. The proposed fast two-dimensional cumulative residual Tsallis entropy threshold segmentation method is not only superior to the 5 comparison methods in computational efficiency, but also has relatively obvious advantages in segmentation adaptability and segmentation accuracy.
阈值分割二维直方图二维生存函数累积剩余Tsallis熵快速递推算法
threshold segmentationtwo-dimensional histogramtwo-dimensional survival functioncumulative residual Tsallis entropyfast recursive algorithm
胡亮,胡学娟,黄圳鸿,等.基于有效背景重构和对比度增强的Mura缺陷检测[J].液晶与显示,2021,36(10):1395-1402. doi: 10.37188/CJLCD.2021-0177http://dx.doi.org/10.37188/CJLCD.2021-0177
HU L, HU X J, HUANG Z H, et al. Mura defect detection based on effective background reconstruction and contrast enhancement [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(10): 1395-1402. (in Chinese). doi: 10.37188/CJLCD.2021-0177http://dx.doi.org/10.37188/CJLCD.2021-0177
苗添,曾虹程,王贺,等.基于迭代阈值分割的星载SAR洪水区域快速提取[J].系统工程与电子技术,2022,44(9):2760-2768. doi: 10.12305/j.issn.1001-506X.2022.09.08http://dx.doi.org/10.12305/j.issn.1001-506X.2022.09.08
MIAO T, ZENG H C, WANG H, et al. A fast extraction method of flood areas based on iterative threshold segmentation using spaceborne SAR data [J]. Systems Engineering and Electronics, 2022, 44(9): 2760-2768. (in Chinese). doi: 10.12305/j.issn.1001-506X.2022.09.08http://dx.doi.org/10.12305/j.issn.1001-506X.2022.09.08
陈玺,何斌,龙勇机,等.复杂海背景下的自适应舰船目标检测[J].液晶与显示,2022,37(3):405-414. doi: 10.37188/cjlcd.2021-0219http://dx.doi.org/10.37188/cjlcd.2021-0219
CHEN X, HE B, LONG Y J, et al. Adaptive ship target detection in complex background [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 405-414. (in Chinese). doi: 10.37188/cjlcd.2021-0219http://dx.doi.org/10.37188/cjlcd.2021-0219
OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. doi: 10.1109/tsmc.1979.4310076http://dx.doi.org/10.1109/tsmc.1979.4310076
LEI B, FAN J L. Image thresholding segmentation method based on minimum square rough entropy [J]. Applied Soft Computing, 2019, 84: 105687. doi: 10.1016/j.asoc.2019.105687http://dx.doi.org/10.1016/j.asoc.2019.105687
LIU J X, SHI J F, HAO F, et al. Arctangent entropy: a new fast threshold segmentation entropy for light colored character image on semiconductor chip surface [J]. Pattern Analysis and Applications, 2022, 25(4): 1075-1090. doi: 10.1007/s10044-022-01079-yhttp://dx.doi.org/10.1007/s10044-022-01079-y
ABUTALEB A S. Automatic thresholding of gray-level pictures using two-dimensional entropy [J]. Computer Vision, Graphics, and Image Processing, 1989, 47(1): 22-32. doi: 10.1016/0734-189x(89)90051-0http://dx.doi.org/10.1016/0734-189x(89)90051-0
刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105.
LIU J Z, LI W Q. The Automatic Thresholding of gray-level pictures via two-dimensional OTSU method [J]. Acta Automatica Sinica, 1993, 19(1): 101-105. (in Chinese)
XIAO L Y, FAN C D, OUYANG H L, et al. Adaptive trapezoid region intercept histogram based Otsu method for brain MR image segmentation [J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(4): 2161-2176. doi: 10.1007/s12652-021-02976-6http://dx.doi.org/10.1007/s12652-021-02976-6
曹建农.图像分割的熵方法综述[J].模式识别与人工智能,2012,25(6):958-971. doi: 10.3969/j.issn.1003-6059.2012.06.011http://dx.doi.org/10.3969/j.issn.1003-6059.2012.06.011
CAO J N. Review on image segmentation based on entropy [J]. Pattern Recognition and Artificial Intelligence, 2012, 25(6): 958-971. (in Chinese). doi: 10.3969/j.issn.1003-6059.2012.06.011http://dx.doi.org/10.3969/j.issn.1003-6059.2012.06.011
陈琪,熊博莅,陆军,等.改进的二维Otsu图像分割方法及其快速实现[J].电子与信息学报,2010,32(5):1100-1104. doi: 10.3724/SP.J.1146.2009.00627http://dx.doi.org/10.3724/SP.J.1146.2009.00627
CHEN Q, XIONG B L, LU J, et al. Improved two-dimensional Otsu image segmentation method and fast recursive realization [J]. Journal of Electronics & Information Technology, 2010, 32(5): 1100-1104. (in Chinese). doi: 10.3724/SP.J.1146.2009.00627http://dx.doi.org/10.3724/SP.J.1146.2009.00627
吴一全,潘喆.二维Tsallis-Havrda-Charvat熵阈值分割的快速递推算法[J].信号处理,2009,25(4):665-668. doi: 10.3969/j.issn.1003-0530.2009.04.031http://dx.doi.org/10.3969/j.issn.1003-0530.2009.04.031
WU Y Q, PAN Z. Fast recurring two-dimensional Tsallis-Havrda-Charvat entropic thresholding algorithms [J]. Signal Processing, 2009, 25(4): 665-668. (in Chinese). doi: 10.3969/j.issn.1003-0530.2009.04.031http://dx.doi.org/10.3969/j.issn.1003-0530.2009.04.031
赵恒,安维胜,杨陶.双曲线二维Otsu阈值分割算法[J].计算机与数字工程,2019,47(8):2033-2038. doi: 10.3969/j.issn.1672-9722.2019.08.040http://dx.doi.org/10.3969/j.issn.1672-9722.2019.08.040
ZHAO H, AN W S, YANG T. Hyperbolic two dimensional Otsu threshold segmentation algorithm [J]. Computer & Digital Engineering, 2019, 47(8): 2033-2038. (in Chinese). doi: 10.3969/j.issn.1672-9722.2019.08.040http://dx.doi.org/10.3969/j.issn.1672-9722.2019.08.040
梁义涛,孟亚敏,朱玲艳,等.二维Otsu拟合线阈值图像分割方法[J].科学技术与工程,2021,21(9):3689-3697. doi: 10.3969/j.issn.1671-1815.2021.09.038http://dx.doi.org/10.3969/j.issn.1671-1815.2021.09.038
LIANG Y T, MENG Y M, ZHU L Y, et al. Image segmentation with two-dimensional Otsu fitting line threshold method [J]. Science Technology and Engineering, 2021, 21(9): 3689-3697. (in Chinese). doi: 10.3969/j.issn.1671-1815.2021.09.038http://dx.doi.org/10.3969/j.issn.1671-1815.2021.09.038
YANG W, CAI L L, WU F. Image segmentation based on gray level and local relative entropy two dimensional histogram [J]. PLoS One, 2020, 15(3): e0229651. doi: 10.1371/journal.pone.0229651http://dx.doi.org/10.1371/journal.pone.0229651
TOOMAJ A, ATABAY H A. Some new findings on the cumulative residual Tsallis entropy [J]. Journal of Computational and Applied Mathematics, 2022, 400: 113669. doi: 10.1016/j.cam.2021.113669http://dx.doi.org/10.1016/j.cam.2021.113669
LEI T, JIA X H, ZHANG Y G, et al. Superpixel-based fast fuzzy C-means clustering for color image segmentation [J]. IEEE Transactions on Fuzzy Systems, 2019, 27(9): 1753-1766. doi: 10.1109/tfuzz.2018.2889018http://dx.doi.org/10.1109/tfuzz.2018.2889018
LEI T, LIU P, JIA X H, et al. Automatic fuzzy clustering framework for image segmentation [J]. IEEE Transactions on Fuzzy Systems, 2020, 28(9): 2078-2092. doi: 10.1109/tfuzz.2019.2930030http://dx.doi.org/10.1109/tfuzz.2019.2930030
FANG J X, LIU H X, LIU J, et al. Fuzzy region-based active contour driven by global and local fitting energy for image segmentation [J]. Applied Soft Computing, 2021, 100: 106982. doi: 10.1016/j.asoc.2020.106982http://dx.doi.org/10.1016/j.asoc.2020.106982
ROSS T D, WORRELL S W, VELTEN V J, et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set [C]//Proceedings of SPIE, Algorithms for Synthetic Aperture Radar Imagery V. Orlando, USA: SPIE, 1998: 566-573. doi: 10.1117/12.321859http://dx.doi.org/10.1117/12.321859
0
浏览量
14
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构