1.宁波大学 信息科学与工程学院, 浙江 宁波 315211
[ "朱浩波(1996—),男,浙江宁波人,硕士研究生,2019年于同济大学浙江学院获得学士学位,主要从事磁传感器及其应用方面的研究。E-mail:2011082266@ nbu.edu.cn" ]
[ "王海(1988—),男,河南驻马店人,博士,讲师,2017年于中国科学院上海微系统所获得博士学位,主要从事磁传感器及其应用方面的研究。E-mail:wanghai@nbu.edu.cn" ]
[ "孔祥燕(1973—),女,博士,教授,2005年于中国科学院物理所获得博士学位,主要从事磁传感器及其前沿应用方面的研究。E-mail:kongxiangyan@ nbu.edu.cn" ]
扫 描 看 全 文
朱浩波, 王海, 李子豪, 等. 隧道磁阻传感器在OLED电流检测中的应用[J]. 液晶与显示, 2023,38(5):595-601.
ZHU Hao-bo, WANG Hai, LI Zi-hao, et al. OLED current detection using tunneling magnetoresistance sensor[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(5):595-601.
朱浩波, 王海, 李子豪, 等. 隧道磁阻传感器在OLED电流检测中的应用[J]. 液晶与显示, 2023,38(5):595-601. DOI: 10.37188/CJLCD.2022-0420.
ZHU Hao-bo, WANG Hai, LI Zi-hao, et al. OLED current detection using tunneling magnetoresistance sensor[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(5):595-601. DOI: 10.37188/CJLCD.2022-0420.
有机发光二极管(Organic Light-Emitting Diode,OLED)显示器的亮度、色域和显示不均(Mura)等特性与其驱动电流息息相关。为了实现封装后OLED电流的无损检测,本文建立了一种基于隧道磁阻(Tunneling Magnetoresistance, TMR)效应的OLED电流无损检测方法。首先,根据OLED显示器亮度与驱动电流的关系,得到一行像素全部点亮时的驱动电流是40 mA,通过仿真分析40 mA电流的空间磁场分布,估算出TMR磁传感器的灵敏度指标要求。然后,选择TMR2922作为磁传感器,实验研究了点亮双行、多行和单列像素时,显示器磁场与电流的关系、屏幕电磁兼容问题和传感器灵敏度问题。最后,对比分析了不同驱动电流下,TMR2922的磁场数据和Hyperion色度计的光学数据。仿真表明,高度为1.5 mm时磁场传感器的噪声要优于1.1 nT/,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43258204&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43258201&type=,6.60400009,3.47133350,;实验结果表明,在无屏蔽环境下TMR2922可以检测出OLED mA级的行电流,对于μA级的列电流需要灵敏度更高的磁传感器。
The brightness, color gamut, Mura and other characteristics of the organic light-emitting diode (OLED) display are closely related to its driving current. In order to realize the nondestructive detection of OLED current after packaging, this paper establishes a magnetic detection method which is based on tunneling magnetoresistance (TMR) effect. First, according to the relationship between the brightness and its driving current of OLED display, it is obtained that the driving current is about 40 mA when one row pixels are light on. Through simulation and analysis of the spatial magnetic field distribution of 40 mA current, the sensitivity index requirements of TMR magnetic sensor are estimated. Then, TMR2922 is selected as the magnetic sensor. By lighting two row pixels, the relationship between display magnetic field and current is studied. To research the electromagnetic interference of the display, multi-row pixels are lighted. To determine the ability of TMR2922 current detection, one column of pixels is lighted. Finally, the magnetic field data of TMR2922 and the optical data of Hyperion colorimeter under different driving currents are compared and analyzed. The simulation shows that the noise of the magnetic field sensor should be better than 1.1 nT/,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43258209&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43258197&type=,7.70466709,4.06400013, when the distance is 1.5 mm. Experimental results show that TMR2922 can detect OLED row current without shielding, which is about mA level, but can not detect column current in μA level, which requires a magnetic sensor with higher sensitivity.
隧道磁阻传感器OLED电流检测电磁兼容
tunneling magnetoresistance sensorOLEDcurrent detectionelectromagnetic compatibility
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Applied Physics Letters, 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
于立帅,苏煜皓,杨菲玲,等.OLED器件电学物理理论综述[J].液晶与显示,2022,37(8):980-996. doi: 10.37188/cjlcd.2022-0105http://dx.doi.org/10.37188/cjlcd.2022-0105
YU L S, SU Y H, YANG F L, et al. Review on theories of electrical physics in OLEDs [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(8): 980-996. (in Chinese). doi: 10.37188/cjlcd.2022-0105http://dx.doi.org/10.37188/cjlcd.2022-0105
刘迪萱,钟锦耀,唐彪,等.柔性与印刷OLED研究进展[J].液晶与显示,2021,36(2):217-228. doi: 10.37188/CJLCD.2020-0232http://dx.doi.org/10.37188/CJLCD.2020-0232
LIU D X, ZHONG J Y, TANG B, et al. Research progress of flexible and printed OLED [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(2): 217-228. (in Chinese). doi: 10.37188/CJLCD.2020-0232http://dx.doi.org/10.37188/CJLCD.2020-0232
ZHU Z Q, KLIMES K, HOLLOWAY S, et al. Efficient cyclometalated platinum(Ⅱ) complex with superior operational stability [J]. Advanced Materials, 2017, 29(6): 1605002. doi: 10.1002/adma.201605002http://dx.doi.org/10.1002/adma.201605002
KIM C, JUNG J H, SUNG D Y, et al. 2 400 ppi RGB side-by-side OLED micro-display for AR applications [J]. SID Symposium Digest of Technical Papers, 2021, 52(1): 131-134. doi: 10.1002/sdtp.14628http://dx.doi.org/10.1002/sdtp.14628
周洋,刘长春,陈瑨,等.PEDOT纳米线透明导电薄膜的制备及其在OLED器件中的应用[J].微纳电子技术,2022,59(10):1098-1104.
ZHOU Y, LIU C C, CHEN J, et al. Preparation of the transparent conductive films based on poly(3, 4-ethylenedioxythiophene) nanowires and their application in OLED devices [J]. Micronanoelectronic Technology, 2022, 59(10): 1098-1104. (in Chinese)
苏一非.薄膜晶体管器件自动化电学表征系统的研究[D].上海:上海交通大学,2016.
SU Y F. The study of automatic electrical characterization system for thin film transistors [D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
ZHENG Y C, RUAN Y J, ZHENG L L, et al. Multichannel optical fiber spectral and imaging system for pixel-level measurement of display [J]. IEEE Photonics Technology Letters, 2020, 32(5): 271-274. doi: 10.1109/lpt.2020.2970081http://dx.doi.org/10.1109/lpt.2020.2970081
ZANG C X, LIU S H, XU M X, et al. Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling [J]. Light: Science & Applications, 2021, 10(1): 116. doi: 10.1038/s41377-021-00559-whttp://dx.doi.org/10.1038/s41377-021-00559-w
LEE G J, LEE C H, JEONG J C. Multi-line driving technology on PM OLED using graph theory and correlation [J]. Journal of the Institute of Electronics Engineers of Korea SP, 2010, 47(1): 62-72.
袁德,陈秋松,陈历相,等.激子态和电荷转移态的竞争对有机磁电导正负效应的调控[J].中国科学:物理学 力学 天文学,2016,46(3):037001. doi: 10.1360/sspma2015-00231http://dx.doi.org/10.1360/sspma2015-00231
YUAN D, CHEN Q S, CHEN L X, et al. Tuning the magnetoconductance from positive to negative upon the formation competition between exciton and charge-transfer states [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2016, 46(3): 037001. (in Chinese). doi: 10.1360/sspma2015-00231http://dx.doi.org/10.1360/sspma2015-00231
LIU X J, CHANANA A, LIU H L, et al. Magneto-electroluminescence study of fringe field in “magnetic” organic light-emitting diodes [J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30072-30078. doi: 10.1021/acsami.9b07512http://dx.doi.org/10.1021/acsami.9b07512
SOBELMAN I I. Atomic Spectra and Radiative Transitions [M]. Berlin: Springer, 1979. doi: 10.1007/978-3-662-05905-0_9http://dx.doi.org/10.1007/978-3-662-05905-0_9
SHANG X S, WANG D F, ITOH T, et al. A passive field conversion-amplification scheme: demonstrated by integrating a magnetic cantilever with a TMR for current monitoring [J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 5295-5303. doi: 10.1109/tie.2021.3078386http://dx.doi.org/10.1109/tie.2021.3078386
陈晓芳,刘崇伟,王崇,等.TMR电流传感器复杂电磁环境抗干扰技术研究[J].仪表技术与传感器,2020(1):13-16.
CHEN X F, LIU C W, WANG C, et al. Research on anti-interference technology of complex electromagnetic environment of TMR current sensor [J]. Instrument Technique and Sensor, 2020(1): 13-16. (in Chinese)
鲁文帅,尤睿,周扬,等.基于单片TMR磁传感器的非侵入电流监测微系统[J].仪器仪表学报,2020,41(6):1-9.
LU W S, YOU R, ZHOU Y, et al. Non-invasive current monitoring microsystem based on a single TMR sensor [J]. Chinese Journal of Scientific Instrument, 2020, 41(6): 1-9. (in Chinese)
0
浏览量
48
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构