1.北京印刷学院 印刷与包装工程学院, 北京 102600
2.北京大学 材料科学与工程学院, 北京 100871
[ "章欣然(1996—),女,安徽芜湖人,硕士研究生,2019年于昆明理工大学获得学士学位,主要从事盘状液晶自组装方式及其光电性能方面的研究。E-mail: ollyzxr@" ]
[ "张春秀(1972—),女,辽宁锦州人,博士,教授,2009年于北京交通大学获得博士学位,主要从事以高效电荷传导能力的盘状液晶为主要研究方向的柔性有机电子学。E-mail: zhangchunxiu@bigc.edu.cn" ]
[ "于海峰(1975—),男,河北秦皇岛人,博士,研究员,2003年于清华大学获得博士学位,主要从事液晶/高分子功能材料方面的研究。E-mail: yuhaifeng@pku.edu.cn" ]
扫 描 看 全 文
章欣然, 张伟民, 张茂鑫, 等. 软物质中Frank-Kasper相研究进展[J]. 液晶与显示, 2022,37(12):1520-1530.
ZHANG Xin-ran, ZHANG Wei-min, ZHANG Mao-xin, et al. Progress on Frank-Kasper phases in soft matter[J]. Chinese Journal of Liquid Crystals and Displays, 2022,37(12):1520-1530.
章欣然, 张伟民, 张茂鑫, 等. 软物质中Frank-Kasper相研究进展[J]. 液晶与显示, 2022,37(12):1520-1530. DOI: 10.37188/CJLCD.2022-0281.
ZHANG Xin-ran, ZHANG Wei-min, ZHANG Mao-xin, et al. Progress on Frank-Kasper phases in soft matter[J]. Chinese Journal of Liquid Crystals and Displays, 2022,37(12):1520-1530. DOI: 10.37188/CJLCD.2022-0281.
人类对于物质微观结构的探索从未停止过,理解粒子如何在空间堆叠对科学家和技术人员都是一个挑战。在弱相互作用和熵焓竞争的驱动下,软物质经常表现出丰富的自组装形貌和相结构。其中最吸引人的Frank-Kasper相是一种介于晶体和准晶之间的过渡态,具有高配位数(配位数为14,15,16)的二十面体壳层密堆积的复杂球形相结构。软物质为Frank-Kasper相研究提供了新奇的分子与组装结构,同时还丰富和发展了Frank-Kasper相。本文主要对能形成Frank-Kasper相的小分子表面活性剂、嵌段共聚物、树枝状大分子以及巨型两亲分子等软物质进行了简要综述。该类结构可以用于研究非均一性、易变形软球体在空间的堆积,并对软物质自组装形成复杂拓扑密堆积结构的机制以及理解准晶的生长机理等都具有重要意义。
Man’s exploration of the microstructure of matter has never stopped, and understanding how particles stack up in space is still remaining a great challenge for scientists and technicians. The soft matter often shows abundant self-assembly morphologies and phase topological structures due to the drive of weak intermolecular interactions and the competition of entropic enthalpies. Among them, Frank-Kasper phases are the most fascinating, which have complex topologically dense stacking structures. As a transition state between crystal and quasicrystal, the Frank-Kasper phase has a kind of complex spherical phase structure with a dense icosahedral shell and a high coordination number (CN=14,15,16). The soft matter offers novel molecular and self-assembled structures for study of Frank-Kasper phase. This paper presents a brief review of the research process on soft matters such as small molecule surfactants, block copolymers, dendritic macromolecules and giant amphiphilic molecules that can form Frank-Kasper phases. These soft matters can be used as a material for studying the spatial accumulation of non-homogeneous and deformable soft spheres. The Frank-Kasper phase plays a crucial role in the mechanism of soft matter self-assembling into complex topological close-packing structures, which should contribute to understanding the growth mechanism of quasicrystals.
软物质Frank-Kasper相自组装液晶
soft matterFrank-Kasper phaseself-assemblyliquid crystal
DE GRAEF M, MCHENRY M E. Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry [M]. 2nd ed. Cambridge: Cambridge University Press, 2012. doi: 10.1017/cbo9781139051637http://dx.doi.org/10.1017/cbo9781139051637
SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry [J]. Physical Review Letters, 1984, 53(20): 1951-1953. doi: 10.1103/physrevlett.53.1951http://dx.doi.org/10.1103/physrevlett.53.1951
秦高梧,谢红波,潘虎成,等.一类介于晶体与准晶体之间的有序结构[J].金属学报,2018,54(11):1490-1502. doi: 10.11900/0412.1961.2018.00357http://dx.doi.org/10.11900/0412.1961.2018.00357
QIN G W, XIE H B, PAN H C, et al. A new class of ordered structure between crystals and quasicrystals [J]. Acta Metallurgica Sinica, 2018, 54(11): 1490-1502. (in Chinese). doi: 10.11900/0412.1961.2018.00357http://dx.doi.org/10.11900/0412.1961.2018.00357
柏拉图.蒂迈欧篇[M].谢文郁,译.上海:上海人民出版社,2003. doi: 10.26420/austinjendocrinoldiabetes.2021.1088http://dx.doi.org/10.26420/austinjendocrinoldiabetes.2021.1088
PLATO. Timaeus [M]. XIE W Y, trans. Shanghai: Shanghai People’s Publishing House, 2003. (in Chinese). doi: 10.26420/austinjendocrinoldiabetes.2021.1088http://dx.doi.org/10.26420/austinjendocrinoldiabetes.2021.1088
HUANG M J, YUE K, WANG J, et al. Frank-Kasper and related quasicrystal spherical phases in macromolecules [J]. Science China Chemistry, 2018, 61(1): 33-45. doi: 10.1007/s11426-017-9140-8http://dx.doi.org/10.1007/s11426-017-9140-8
FRANK F C, KASPER J S. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles [J]. Acta Crystallographica, 1958, 11(3): 184-190. doi: 10.1107/s0365110x58000487http://dx.doi.org/10.1107/s0365110x58000487
FRANK F C, KASPER J S. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures [J]. Acta Crystallographica, 1959, 12(7): 483-499. doi: 10.1107/s0365110x59001499http://dx.doi.org/10.1107/s0365110x59001499
杨平.材料科学中的理论物理学家弗兰克[J].金属世界,2017(3):1-8. doi: 10.3969/j.issn.1000–6826.2017.03.01http://dx.doi.org/10.3969/j.issn.1000–6826.2017.03.01
YANG P. Therotical physicist frank in materials science [J]. Metal World, 2017(3): 1-8. (in Chinese). doi: 10.3969/j.issn.1000–6826.2017.03.01http://dx.doi.org/10.3969/j.issn.1000–6826.2017.03.01
RIVIER N. Kelvin’s conjecture on minimal froths and the counter-example of Weaire and Phelan [J]. Philosophical Magazine Letters, 1994, 69(5): 297-303. doi: 10.1080/09500839408241607http://dx.doi.org/10.1080/09500839408241607
JAYARAMAN A, BAEZ-COTTO C M, MANN T J, et al. Dodecagonal quasicrystals of oil-swollen ionic surfactant micelles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(31): e2101598118. doi: 10.1073/pnas.2101598118http://dx.doi.org/10.1073/pnas.2101598118
XIE H B, BAI J Y, REN H Y, et al. Two-dimensional frank-Kasper Z phase with one unit-cell thickness [J]. Nano Letters, 2021, 21(17): 7198-7205. doi: 10.1021/acs.nanolett.1c02081http://dx.doi.org/10.1021/acs.nanolett.1c02081
DORFMAN K D. Frank-Kasper phases in block polymers [J]. Macromolecules, 2021, 54(22): 10251-10270. doi: 10.1021/acs.macromol.1c01650http://dx.doi.org/10.1021/acs.macromol.1c01650
VARGAS R, MARIANI P, GULIK A, et al. Cubic phases of lipid-containing systems: the structure of phase Q223 (Space group Pm3n). An X-ray scattering study [J]. Journal of Molecular Biology, 1992, 225(1): 137-145. doi: 10.1016/0022-2836(92)91031-jhttp://dx.doi.org/10.1016/0022-2836(92)91031-j
RAPPOLT M, CACHO-NERIN F, MORELLO C, et al. How the chain configuration governs the packing of inverted micelles in the cubic Fd3m-phase [J]. Soft Matter, 2013, 9(27): 6291-6300. doi: 10.1039/c3sm50308ahttp://dx.doi.org/10.1039/c3sm50308a
LIU Y C, LIU T, YAN X Y, et al. Expanding quasiperiodicity in soft matter: supramolecular decagonal quasicrystals by binary giant molecule blends [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(3): e2115304119. doi: 10.1073/pnas.2115304119http://dx.doi.org/10.1073/pnas.2115304119
MACFARLANE R J, LEE B, JONES M R, et al. Nanoparticle superlattice engineering with DNA [J]. Science, 2011, 334(6053): 204-208. doi: 10.1126/science.1210493http://dx.doi.org/10.1126/science.1210493
IMPÉROR-CLERC M. Thermotropic cubic mesophases [J]. Current Opinion in Colloid & Interface Science, 2005, 9(6): 370-376. doi: 10.1016/j.cocis.2004.12.004http://dx.doi.org/10.1016/j.cocis.2004.12.004
ZHANG P, DE HAAN L T, DEBIJE M G, et al. Liquid crystal-based structural color actuators [J]. Light: Science & Applications, 2022, 11(1): 248. doi: 10.1038/s41377-022-00937-yhttp://dx.doi.org/10.1038/s41377-022-00937-y
史书宽,李斌轩,杨槐,等.仿生光热管理智能高分子材料[J].液晶与显示,2022,37(2):250-263. doi: 10.37188/CJLCD.2021-0314http://dx.doi.org/10.37188/CJLCD.2021-0314
SHI S K, LI B X, YANG H, et al. Bioinspired intelligent polymer materials for optical and thermal management [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 250-263. (in Chinese). doi: 10.37188/CJLCD.2021-0314http://dx.doi.org/10.37188/CJLCD.2021-0314
LACHMAYR K K, SITA L R. Small-molecule modulation of soft-matter frank-Kasper phases: a method for adding function to form [J]. Angewandte Chemie International Edition, 2020, 59(9): 3563-3567. doi: 10.1002/anie.201915416http://dx.doi.org/10.1002/anie.201915416
ZHANG X, XU Y Y, VALENZUELA C, et al. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence [J]. Light: Science & Applications, 2022, 11(1): 223. doi: 10.1038/s41377-022-00913-6http://dx.doi.org/10.1038/s41377-022-00913-6
王建闯,王文忠,于海峰.光驱动液晶聚合物振动器研究进展[J].液晶与显示,2022,37(2):186-198. doi: 10.37188/CJLCD.2021-0253http://dx.doi.org/10.37188/CJLCD.2021-0253
WANG J C, WANG W Z, Yu H F. Research progress in light-driven oscillators of liquid-crystalline polymers [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 186-198. (in Chinese). doi: 10.37188/CJLCD.2021-0253http://dx.doi.org/10.37188/CJLCD.2021-0253
纪宇帆,蔡锋, 于海峰. 液晶聚合物的表面形貌光调控研究进展[J]. 应用化学, 2021, 38(10): 1226-1237. doi: 10.19894/j.issn.1000-0518.210381http://dx.doi.org/10.19894/j.issn.1000-0518.210381
JI Y F, CAI F, YU H F. Research progress on photoswitchable surface topography of liquid crystalline polymer[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1226-1237. (in Chinese). doi: 10.19894/j.issn.1000-0518.210381http://dx.doi.org/10.19894/j.issn.1000-0518.210381
张文彬,陈尔强,王晶,等.从“纳米原子”到“巨型分子”的软物质研究[J].物理学报,2016,65(18):183601. doi: 10.7498/aps.65.183601http://dx.doi.org/10.7498/aps.65.183601
ZHANG W B, CHEN E Q, WANG J, et al. Soft matters from “nano-atoms” to “giant molecules” [J]. Acta Physica Sinica, 2016, 65(18): 183601. (in Chinese). doi: 10.7498/aps.65.183601http://dx.doi.org/10.7498/aps.65.183601
邵宇.基于多面体寡聚倍半硅氧烷的ABX型巨型分子的合成表征及自组装研究[D].上海:东华大学,2019.
SHAO Y. Synthesis and self-assembly of ABX-type giant molecules based on polyhedral oligomeric silsesquioxanes [D]. Shanghai: Donghua University, 2019. (in Chinese)
KIM S A, JEONG K J, YETHIRAJ A, et al. Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(16): 4072-4077. doi: 10.1073/pnas.1701608114http://dx.doi.org/10.1073/pnas.1701608114
JAYARAMAN A, MAHANTHAPPA M K. Counterion-dependent access to low-symmetry lyotropic sphere packings of ionic surfactant micelles [J]. Langmuir, 2018, 34(6): 2290-2301. doi: 10.1021/acs.langmuir.7b03833http://dx.doi.org/10.1021/acs.langmuir.7b03833
ISRAELACHVILI J N, MITCHELL D J, NINHAM B W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers [J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1976, 72: 1525-1568. doi: 10.1039/f29767201525http://dx.doi.org/10.1039/f29767201525
ASTE T, WEAIRE D. The Pursuit of Perfect Packing [M]. 2nd ed. New York: Taylor & Francis, 2008. doi: 10.1201/9781420068184http://dx.doi.org/10.1201/9781420068184
ZIHERL P, KAMIEN R D. Soap froths and crystal structures [J]. Physical Review Letters, 2000, 85(16): 3528-3531. doi: 10.1103/physrevlett.85.3528http://dx.doi.org/10.1103/physrevlett.85.3528
ZIHERL P, KAMIEN R D. Maximizing entropy by minimizing area: towards a new principle of self-organization [J]. The Journal of Physical Chemistry B, 2001, 105(42): 10147-10158. doi: 10.1021/jp010944qhttp://dx.doi.org/10.1021/jp010944q
LUZZATI V, VARGAS R, GULIK A, et al. Lipid polymorphism: a correction. The structure of the cubic phase of extinction symbol Fd--consists of two types of disjointed reverse micelles embedded in a three-dimensional hydrocarbon matrix [J]. Biochemistry, 1992, 31(1): 279-285. doi: 10.1021/bi00116a038http://dx.doi.org/10.1021/bi00116a038
BAEZ-COTTO C M, MAHANTHAPPA M K. Micellar mimicry of intermetallic C14 and C15 laves phases by aqueous lyotropic self-assembly [J]. ACS Nano, 2018, 12(4): 3226-3234. doi: 10.1021/acsnano.7b07475http://dx.doi.org/10.1021/acsnano.7b07475
BATES F S, FREDRICKSON G H. Block copolymers-designer soft materials [J]. Physics Today, 1999, 52(2): 32-38. doi: 10.1063/1.882522http://dx.doi.org/10.1063/1.882522
NUNES S P. Block copolymer membranes for aqueous solution applications [J]. Macromolecules, 2016, 49(8): 2905-2916. doi: 10.1021/acs.macromol.5b02579http://dx.doi.org/10.1021/acs.macromol.5b02579
GRASON G M. The packing of soft materials: molecular asymmetry, geometric frustration and optimal lattices in block copolymer melts [J]. Physics Reports, 2006, 433(1): 1-64. doi: 10.1016/j.physrep.2006.08.001http://dx.doi.org/10.1016/j.physrep.2006.08.001
程晓红,鞠秀萍,叶辉.不同拓扑构型嵌段液晶分子的合成与相变行为 [J].化学进展,2006,18(12):1626-1633. doi: 10.3321/j.issn:1005-281X.2006.12.007http://dx.doi.org/10.3321/j.issn:1005-281X.2006.12.007
CHENG X H, JU X P, YE H. Synthesis and mesophase characterization of block molecules with different topologies [J]. Progress in Chemistry, 2006, 18(12): 1626-1633. (in Chinese). doi: 10.3321/j.issn:1005-281X.2006.12.007http://dx.doi.org/10.3321/j.issn:1005-281X.2006.12.007
王添洁,于海峰.光响应液晶嵌段共聚物研究进展[J].液晶与显示,2015,30(4):543-552. doi: 10.3788/YJYXS20153004.0543http://dx.doi.org/10.3788/YJYXS20153004.0543
WANG T J, YU H F. Progress in photoresponsive liquid-crystalline block copolymer [J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(4): 543-552. (in Chinese). doi: 10.3788/YJYXS20153004.0543http://dx.doi.org/10.3788/YJYXS20153004.0543
陈爱华, 张承鋆, 邓子超, 等. 液晶嵌段共聚物液相自组装体的结构调控[J]. 应用化学, 2021, 38(10): 1255-1267. doi: 10.19894/j.issn.1000-0518.210363http://dx.doi.org/10.19894/j.issn.1000-0518.210363
CHEN A H, ZHANG C Y, DENG Z C, et al. Structure control of liquid crystalline block copolymers in liquid-phase self-assembly[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1255-1267. (in Chinese). doi: 10.19894/j.issn.1000-0518.210363http://dx.doi.org/10.19894/j.issn.1000-0518.210363
孙艳晓.离散型嵌段共聚物的合成及相关自组装行为研究[D].广州:华南理工大学,2020.
SUN Y X. Discrete block copolymers: synthesis and self-assembly behaviors [D]. Guangzhou: South China University of Technology, 2020. (in Chinese)
LEE S, BLUEMLE M J, BATES F S. Discovery of a Frank-Kasper σ phase in sphere-forming block copolymer melts [J]. Science, 2010, 330(6002): 349-353. doi: 10.1126/science.1195552http://dx.doi.org/10.1126/science.1195552
LEE S, LEIGHTON C, BATES F S. Sphericity and symmetry breaking in the formation of Frank-Kasper phases from one component materials [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): 17723-17731. doi: 10.1073/pnas.1408678111http://dx.doi.org/10.1073/pnas.1408678111
LINDSAY A P, LEWIS III R M, LEE B, et al. A15, σ, and a quasicrystal: access to complex particle packings via bidisperse diblock copolymer blends [J]. ACS Macro Letters, 2020, 9(2): 197-203. doi: 10.1021/acsmacrolett.9b01026http://dx.doi.org/10.1021/acsmacrolett.9b01026
BATES F S, HILLMYER M A, LODGE T P, et al. Multiblock polymers: panacea or Pandora’s box? [J]. Science, 2012, 336(6080): 434-440. doi: 10.1126/science.1215368http://dx.doi.org/10.1126/science.1215368
GILLARD T M, LEE S, BATES F S. Dodecagonal quasicrystalline order in a diblock copolymer melt [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(19): 5167-5172. doi: 10.1073/pnas.1601692113http://dx.doi.org/10.1073/pnas.1601692113
CHEONG G K, BATES F S, DORFMAN K D. Symmetry breaking in particle-forming diblock polymer/homopolymer blends [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(29): 16764-16769. doi: 10.1073/pnas.2006079117http://dx.doi.org/10.1073/pnas.2006079117
MUELLER A J, LINDSAY A P, JAYARAMAN A, et al. Emergence of a C15 Laves phase in diblock polymer/homopolymer blends [J]. ACS Macro Letters, 2020, 9(4): 576-582. doi: 10.1021/acsmacrolett.0c00124http://dx.doi.org/10.1021/acsmacrolett.0c00124
JUN T, PARK H, JEON S, et al. Mesoscale Frank-Kasper crystal structures from Dendron assembly by controlling core apex interactions [J]. Journal of the American Chemical Society, 2021, 143(42): 17548-17556. doi: 10.1021/jacs.1c07313http://dx.doi.org/10.1021/jacs.1c07313
CHO B K, JAIN A, GRUNER S M, et al. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons [J]. Science, 2004, 305(5690): 1598-1601. doi: 10.1126/science.1100872http://dx.doi.org/10.1126/science.1100872
PERCEC V, PETERCA M, DULCEY A E, et al. Hollow spherical supramolecular dendrimers [J]. Journal of the American Chemical Society, 2008, 130(39): 13079-13094. doi: 10.1021/ja8034703http://dx.doi.org/10.1021/ja8034703
PERCEC V, PETERCA M, SIENKOWSKA M J, et al. Synthesis and retrostructural analysis of libraries of AB3 and constitutional isomeric AB2 phenylpropyl ether-based supramolecular dendrimers [J]. Journal of the American Chemical Society, 2006, 128(10): 3324-3334. doi: 10.1021/ja060062ahttp://dx.doi.org/10.1021/ja060062a
BALAGURUSAMY V S K, UNGAR G, PERCEC V, et al. Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and the determination of their shape by X-ray analysis [J]. Journal of the American Chemical Society, 1997, 119(7): 1539-1555. doi: 10.1021/ja963295ihttp://dx.doi.org/10.1021/ja963295i
UNGAR G, ZENG X B. Frank-Kasper, quasicrystalline and related phases in liquid crystals [J]. Soft Matter, 2005, 1(2): 95-106. doi: 10.1039/b502443ahttp://dx.doi.org/10.1039/b502443a
ZENG X B, UNGAR G, LIU Y S, et al. Supramolecular dendritic liquid quasicrystals [J]. Nature, 2004, 428(6979): 157-160. doi: 10.1038/nature02368http://dx.doi.org/10.1038/nature02368
黎太浩,李智,严超,等.软物质准晶的研究进展 [J].云南化工,2015,42(5):22-28. doi: 10.3969/j.issn.1004-275X.2015.05.005http://dx.doi.org/10.3969/j.issn.1004-275X.2015.05.005
LI T H, LI Z, YAN C, et al. Research progress on soft material quasicrystals [J]. Yunnan Chemical Technology, 2015, 42(5): 22-28. (in Chinese). doi: 10.3969/j.issn.1004-275X.2015.05.005http://dx.doi.org/10.3969/j.issn.1004-275X.2015.05.005
PERCEC V, MITCHELL C M, CHO W D, et al. Designing libraries of first generation AB3 and AB2 self-assembling dendrons via the primary structure generated from combinations of (AB)y-AB3 and (AB)y-AB2 building blocks [J]. Journal of the American Chemical Society, 2004, 126(19): 6078-6094. doi: 10.1021/ja049846jhttp://dx.doi.org/10.1021/ja049846j
PERCEC V, IMAM M R, PETERCA M, et al. Self-assembly of dendronized triphenylenes into helical pyramidal columns and chiral spheres [J]. Journal of the American Chemical Society, 2009, 131(22): 7662-7677. doi: 10.1021/ja8094944http://dx.doi.org/10.1021/ja8094944
ROSEN B M, WILSON D A, WILSON C J, et al. Predicting the structure of supramolecular dendrimers via the analysis of libraries of AB3 and constitutional isomeric AB2 biphenylpropyl ether self-assembling dendrons [J]. Journal of the American Chemical Society, 2009, 131(47): 17500-17521. doi: 10.1021/ja907882nhttp://dx.doi.org/10.1021/ja907882n
ZHANG R M, FENG X Y, ZHANG R, et al. Breaking parallel orientation of rods via a dendritic architecture toward diverse supramolecular structures [J]. Angewandte Chemie International Edition, 2019, 58(34): 11879-11885. doi: 10.1002/anie.201904749http://dx.doi.org/10.1002/anie.201904749
PERCEC V, WILSON D A, LEOWANAWAT P, et al. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures [J]. Science, 2010, 328(5981): 1009-1014. doi: 10.1126/science.1185547http://dx.doi.org/10.1126/science.1185547
PERCEC V, PETERCA M, TSUDA Y, et al. Elucidating the structure of the Pmhttp://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37146673&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37146671&type=1.608666662.79399991n cubic phase of supramolecular dendrimers through the modification of their aliphatic to aromatic volume ratio [J]. Chemistry-A European Journal, 2009, 15(36): 8994-9004. doi: 10.1002/chem.200901324http://dx.doi.org/10.1002/chem.200901324
PETERCA M, IMAM M R, HUDSON S D, et al. Complex arrangement of orthogonal nanoscale columns via a supramolecular orientational memory effect [J]. ACS Nano, 2016, 10(11): 10480-10488. doi: 10.1021/acsnano.6b06419http://dx.doi.org/10.1021/acsnano.6b06419
SAHOO D, PETERCA M, IMAM M R, et al. Conformationally flexible dendronized cyclotetraveratrylenes (CTTV)s self-organize a large diversity of chiral columnar, Frank-Kasper and quasicrystal phases [J]. Giant, 2022, 10: 100096. doi: 10.1016/j.giant.2022.100096http://dx.doi.org/10.1016/j.giant.2022.100096
UNGAR G, LIU Y S, ZENG X B, et al. Giant supramolecular liquid crystal lattice [J]. Science, 2003, 299(5610): 1208-1211. doi: 10.1126/science.1078849http://dx.doi.org/10.1126/science.1078849
UNGAR G, PERCEC V, HOLERCA M N, et al. Heat-shrinking spherical and columnar supramolecular dendrimers: their interconversion and dependence of their shape on molecular taper angle [J]. Chemistry-A European Journal, 2000, 6(7): 1258-1266. doi: 10.1002/(sici)1521-3765(20000403)6:7<1258::aid-chem1258>3.0.co;2-ohttp://dx.doi.org/10.1002/(sici)1521-3765(20000403)6:7<1258::aid-chem1258>3.0.co;2-o
YAO X H, CSEH L, ZENG X B, et al. Body-centred cubic packing of spheres-the ultimate thermotropic assembly mode for highly divergent dendrons [J]. Nanoscale Horizons, 2017, 2(1): 43-49. doi: 10.1039/c6nh00155fhttp://dx.doi.org/10.1039/c6nh00155f
YAN X Y, LIN Z W, ZHANG W, et al. Magnifying the structural components of biomembranes: a prototype for the study of the self-assembly of giant lipids [J]. Angewandte Chemie International Edition, 2020, 59(13): 5226-5234. doi: 10.1002/anie.201916149http://dx.doi.org/10.1002/anie.201916149
HUANG J H, SU Z B, HUANG M J, et al. Spherical supramolecular structures constructed via chemically symmetric perylene bisimides: beyond columnar assembly [J]. Angewandte Chemie International Edition, 2020, 59(42): 18563-18571. doi: 10.1002/anie.201914889http://dx.doi.org/10.1002/anie.201914889
ZHANG W, LU X L, MAO J L, et al. Sequence-mandated, distinct assembly of giant molecules [J]. Angewandte Chemie International Edition, 2017, 56(47): 15014-15019. doi: 10.1002/anie.201709354http://dx.doi.org/10.1002/anie.201709354
张文彬,王晓曼,王晓威,等.基于分子纳米粒子的巨型分子 [J].化学进展,2015,27(10):1333-1342. doi: 10.7536/PC150519http://dx.doi.org/10.7536/PC150519
ZHANG W B, WANG X M, WANG X W, et al. Giant molecules based on nano-atoms [J]. Progress in Chemistry, 2015, 27(10): 1333-1342. (in Chinese). doi: 10.7536/PC150519http://dx.doi.org/10.7536/PC150519
YEARDLEY D J P, UNGAR G, PERCEC V, et al. Spherical supramolecular minidendrimers self-organized in an “inverse micellar”-like thermotropic body-centered cubic liquid crystalline phase [J]. Journal of the American Chemical Society, 2000, 122(8): 1684-1689. doi: 10.1021/ja993915qhttp://dx.doi.org/10.1021/ja993915q
HUANG M J, HSU C H, WANG J, et al. Selective assemblies of giant tetrahedra via precisely controlled positional interactions [J]. Science, 2015, 348(6233): 424-428. doi: 10.1126/science.aaa2421http://dx.doi.org/10.1126/science.aaa2421
YUE K, HUANG M J, MARSON R L, et al. Geometry induced sequence of nanoscale Frank-Kasper and quasicrystal mesophases in giant surfactants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(50): 14195-14200. doi: 10.1073/pnas.1609422113http://dx.doi.org/10.1073/pnas.1609422113
SU Z B, HSU C H, GONG Z H, et al. Identification of a Frank-Kasper Z phase from shape amphiphile self-assembly [J]. Nature Chemistry, 2019, 11(10): 899-905. doi: 10.1038/s41557-019-0330-xhttp://dx.doi.org/10.1038/s41557-019-0330-x
JIANG J, WANG Y, JIN L, et al. Modularly constructed polyhedral oligomeric silsesquioxane-based giant molecules for unconventional nanostructure fabrication [J]. ACS Applied Nano Materials, 2020, 3(3): 2952-2958. doi: 10.1021/acsanm.0c00231http://dx.doi.org/10.1021/acsanm.0c00231
0
浏览量
162
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构