1.武汉科技大学 信息科学与工程学院, 湖北 武汉 430081
2.武汉科技大学 教育部冶金自动化与检测技术工程研究中心, 湖北 武汉 430081
[ "魏伦胜(1997—),男,河南信阳人,硕士研究生,2020年于郑州工商学院获得学士学位,主要从事图像处理、目标检测、深度学习等方面的研究。E-mail: 923548906@qq.com" ]
[ "徐望明(1979—),男,湖北武汉人,博士,高级工程师,正高级实验师,2013年于武汉科技大学大学获得博士学位,主要从事图像处理与模式识别等方面的研究。E-mail:xuwangming@wust.edu.cn" ]
扫 描 看 全 文
魏伦胜, 徐望明, 张景元, 等. 基于高效全局上下文网络的轻量级烟火检测算法[J]. 液晶与显示, 2023,38(1):118-127.
WEI Lun-sheng, XU Wang-ming, ZHANG Jing-yuan, et al. Lightweight smoke and fire detection algorithm based on efficient global context network[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):118-127.
魏伦胜, 徐望明, 张景元, 等. 基于高效全局上下文网络的轻量级烟火检测算法[J]. 液晶与显示, 2023,38(1):118-127. DOI: 10.37188/CJLCD.2022-0184.
WEI Lun-sheng, XU Wang-ming, ZHANG Jing-yuan, et al. Lightweight smoke and fire detection algorithm based on efficient global context network[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):118-127. DOI: 10.37188/CJLCD.2022-0184.
针对现有烟火检测算法存在的漏检和误检问题,提出一种基于高效全局上下文网络(EGC-Net)的轻量级烟火检测新算法。该算法以轻量级目标检测网络YOLOX为基础网络,将改进的EGC-Net嵌入到YOLOX的主干特征提取网络与特征金字塔网络之间。EGC-Net由上下文建模、特征转换和特征融合3阶段结构组成,用于获得图像的全局上下文信息,建模烟火目标与其背景信息的远程依赖关系,并结合通道注意力机制学习更具判别力的视觉特征用于烟火检测。实验结果表明,本文提出的EGC-YOLOX烟火检测算法的图像级召回率为95.56%,图像级误报率为4.75%,均优于对比的其他典型轻量级算法,且速度满足实时检测的要求。该算法可在安防和消防领域推广,用于实时火灾监控和预警管理。
Aiming at the problems of missing and false detection in existing smoke and fire detection algorithms, a new lightweight algorithm based on Effective Global Context Network (EGC-Net) is proposed. It takes the lightweight object detection network YOLOX as the basic network, and embeds an improved EGC-Net between the backbone feature extraction network and feature pyramid network of YOLOX. EGC-Net is composed of a three-stage structure of context modeling, feature transformation and feature fusion, which is used to obtain the global context information of image, model the long-range dependency of smoke or fire objects and its background, and learn more discriminative visual features by combining the channel attention mechanism for smoke and fire detection. Experimental results indicate that the image-level recall rate of the proposed smoke and fire detection algorithm EGC-YOLOX is 95.56%, and the image-level false alarm rate is 4.75%, both of which are superior to the compared typical lightweight algorithms, and the speed also meets the requirements of real-time detection. The proposed algorithm can be promoted and applied to the field of security and fire protection for real-time fire monitoring and early warning management.
烟火检测EGC-NetYOLOX全局上下文注意力机制
smoke and fire detectionEGC-NetYOLOXglobal contextattention mechanism
WANG S, XIAO X, DENG T, et al. A Sauter mean diameter sensor for fire smoke detection [J]. Sensors and Actuators B: Chemical, 2019, 281: 920-932. doi: 10.1016/j.snb.2018.11.021http://dx.doi.org/10.1016/j.snb.2018.11.021
党敬民,于海业,宋芳,等.应用于早期火灾探测的CO传感器[J].光学 精密工程,2018,26(8):1876-1881. doi: 10.3788/ope.20182608.1876http://dx.doi.org/10.3788/ope.20182608.1876
DANG J M, YU H Y, SONG F, et al. Development of a CO sensor for early fire detection [J]. Optics and Precision Engineering, 2018, 26(8): 1876-1881. (in Chinese). doi: 10.3788/ope.20182608.1876http://dx.doi.org/10.3788/ope.20182608.1876
CHEN T H, WU P H, CHIOU Y C. An early fire-detection method based on image processing [C]//2004 International Conference on Image Processing (ICIP'04) Singapore: IEEE, 2004: 1707-1710. doi: 10.1109/icip.2004.1419394http://dx.doi.org/10.1109/icip.2004.1419394
ÇELIK T, DEMIREL H. Fire detection in video sequences using a generic color model [J]. Fire Safety Journal, 2009, 44(2): 147-158. doi: 10.1016/j.firesaf.2008.05.005http://dx.doi.org/10.1016/j.firesaf.2008.05.005
RAFIEE A, DIANAT R, JAMSHIDI M, et al. Fire and smoke detection using wavelet analysis and disorder characteristics [C]//2011 3rd International Conference on Computer Research and Development. Shanghai: IEEE, 2011: 262-265. doi: 10.1109/iccrd.2011.5764295http://dx.doi.org/10.1109/iccrd.2011.5764295
WU X H, LU X B, LEUNG H. An adaptive threshold deep learning method for fire and smoke detection [C]//2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Banff: IEEE, 2017: 1954-1959. doi: 10.1109/smc.2017.8122904http://dx.doi.org/10.1109/smc.2017.8122904
WU S X, ZHANG L B. Using popular object detection methods for real time forest fire detection [C]//2018 11th International Symposium on Computational Intelligence and Design (ISCID). Hangzhou: IEEE, 2018: 280-284. doi: 10.1109/iscid.2018.00070http://dx.doi.org/10.1109/iscid.2018.00070
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2015: 91-99.
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. doi: 10.1109/cvpr.2016.91http://dx.doi.org/10.1109/cvpr.2016.91
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525. doi: 10.1109/cvpr.2017.690http://dx.doi.org/10.1109/cvpr.2017.690
REDMON J, FARHADI A. YOLOv3: an incremental improvement [J]. arXiv, 2018:1804.02767. doi: 10.1109/cvpr.2017.690http://dx.doi.org/10.1109/cvpr.2017.690
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [J]. arXiv 2020:2004.10934.
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37. doi: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2
侯易呈,王慧琴,王可.改进的多尺度火焰检测方法[J].液晶与显示,2021,36(5):751-759. doi: 10.37188/CJLCD.2020-0221http://dx.doi.org/10.37188/CJLCD.2020-0221
HOU Y C, WANG H Q, WANG K. Improved multi-scale flame detection method [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 751-759. (in Chinese). doi: 10.37188/CJLCD.2020-0221http://dx.doi.org/10.37188/CJLCD.2020-0221
WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks [C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7794-7803. doi: 10.1109/cvpr.2018.00813http://dx.doi.org/10.1109/cvpr.2018.00813
CAO Y, XU J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond [C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 1971-1980. doi: 10.1109/iccvw.2019.00246http://dx.doi.org/10.1109/iccvw.2019.00246
刘波,许廷发,李相民,等.自适应上下文感知相关滤波跟踪[J].中国光学,2019,12(2):265-273. doi: 10.3788/co.20191202.0265http://dx.doi.org/10.3788/co.20191202.0265
LIU B, XU T F, LI X M, et al. Adaptive context-aware correlation filter tracking [J]. Chinese Optics, 2019, 12(2): 265-273. (in Chinese). doi: 10.3788/co.20191202.0265http://dx.doi.org/10.3788/co.20191202.0265
张瑞琰,姜秀杰,安军社,等.面向光学遥感目标的全局上下文检测模型设计[J].中国光学,2020,13(6):1302-1313. doi: 10.37188/CO.2020-0057http://dx.doi.org/10.37188/CO.2020-0057
ZHANG R Y, JIANG X J, AN J S, et al. Design of global-contextual detection model for optical remote sensing targets [J]. Chinese Optics, 2020, 13(6): 1302-1313. (in Chinese). doi: 10.37188/CO.2020-0057http://dx.doi.org/10.37188/CO.2020-0057
GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021 [J]. arXiv, 2021:2107.08430.
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN [C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1571-1580. doi: 10.1109/cvprw50498.2020.00203http://dx.doi.org/10.1109/cvprw50498.2020.00203
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269. doi: 10.1109/cvpr.2017.243http://dx.doi.org/10.1109/cvpr.2017.243
ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning [J]. Neural Networks, 2018, 107: 3-11. doi: 10.1016/j.neunet.2017.12.012http://dx.doi.org/10.1016/j.neunet.2017.12.012
NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines [C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa: Omnipress, 2010: 807-814.
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/tpami.2015.2389824http://dx.doi.org/10.1109/tpami.2015.2389824
GE Z, LIU S T, LI Z M, et al. OTA: optimal transport assignment for object detection [C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 303-312. doi: 10.1109/cvpr46437.2021.00037http://dx.doi.org/10.1109/cvpr46437.2021.00037
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 11531-11539. doi: 10.1109/cvpr42600.2020.01155http://dx.doi.org/10.1109/cvpr42600.2020.01155
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization [C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626. doi: 10.1109/iccv.2017.74http://dx.doi.org/10.1109/iccv.2017.74
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. doi: 10.1109/cvpr.2016.90http://dx.doi.org/10.1109/cvpr.2016.90
0
浏览量
131
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构