1.西安工业大学 电子信息工程学院, 陕西 西安 710021
2.西安工业大学 兵器科学与技术学院, 陕西 西安 710021
[ "李 静(1972—),女,陕西西安人,博士,教授,2013年于西北工业大学获得博士学位,主要从事机器视觉及兵器测控技术方面的研究。E-mail:840407561@qq.com" ]
扫 描 看 全 文
李静, 喻佳成, 张灵灵. 基于改进SSD的航拍飞机目标检测方法[J]. 液晶与显示, 2023,38(1):128-137.
LI Jing, YU Jia-cheng, ZHANG Ling-ling. Aircraft target detection method based on improved SSD[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):128-137.
李静, 喻佳成, 张灵灵. 基于改进SSD的航拍飞机目标检测方法[J]. 液晶与显示, 2023,38(1):128-137. DOI: 10.37188/CJLCD.2022-0183.
LI Jing, YU Jia-cheng, ZHANG Ling-ling. Aircraft target detection method based on improved SSD[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):128-137. DOI: 10.37188/CJLCD.2022-0183.
针对航拍图像中对于小尺度的飞机目标出现漏检、错检的问题,在SSD(Single Shot MultiBox Detector)模型的基础上提出了一种改进SSD的航拍图像目标检测模型。首先,针对SSD模型中浅层特征图中缺乏语义、细节信息的问题,设计了一种特征融合机制,通过添加细节信息补充特征层和添加由递归反向路径获得的语义信息补充特征层来丰富浅层特征图的语义、细节信息。然后,针对SSD模型对通道以及空间信息的关注能力不足的问题,引入了结合通道和空间的混合注意力模块来提高模型整体的关注能力。最后,针对SSD模型中先验框与小尺度目标不匹配的问题,对先验框的比例进行了调整。使用自制的航拍图像数据集进行验证,结果表明改进后的模型检测精度为95.7%,相较于原模型提高了7.5%,检测速度达到30.8 FPS。
For the problem of omission and misdetection of small-scale aircraft targets in aerial images, an improving SSD object detection model is proposed based on SSD (Single Shot MultiBox Detector) model. Firstly, in view of the lack of semantic and detailed information in the shallow feature map in the SSD model, a feature fusion mechanism is designed to enrich the semantic and detailed information of the shallow feature layer by adding the supplementary feature layer obtained from the recursive reverse path. Then, to address the problem of the SSD model to focus on the channels and spatial information, a hybrid attention module combining channels and space is introduced to improve the overall attention ability of the model. Finally, the proportion of prior boxes is adjusted for the problem of mismatch to small-scale targets in the SSD model. The self-made aerial images data set is used for verification. The results show that the improved algorithm accuracy is 95.7%, which is 7.5% higher than original SSD algorithm, and the detection speed is 30.8 FPS.
目标检测特征融合注意力机制航拍图像
object detectionfeature fusionattentional mechanismaerial images
CHEN J F, LU K Y, WANG J X. Research on UAV image recognition based on convolutional neural network [C]//2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). Dalian: IEEE, 2020. doi: 10.1109/icaica50127.2020.9182686http://dx.doi.org/10.1109/icaica50127.2020.9182686
AYAMGA M, AKABA S, NYAABA A A. Multifaceted applicability of drones: a review [J]. Technological Forecasting and Social Change, 2021, 167: 120677. doi: 10.1016/j.techfore.2021.120677http://dx.doi.org/10.1016/j.techfore.2021.120677
张可,杨灿坤,周春平,等.无人机视频图像运动目标检测算法综述[J].液晶与显示,2019,34(1):98-109. doi: 10.3788/yjyxs20193401.0098http://dx.doi.org/10.3788/yjyxs20193401.0098
ZHANG K, YANG C K, ZHOU C P, et al. Review of moving target detection algorithms for UAV video images [J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(1): 98-109. (in Chinese). doi: 10.3788/yjyxs20193401.0098http://dx.doi.org/10.3788/yjyxs20193401.0098
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers [C]//16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. doi: 10.1007/978-3-030-58452-8_13http://dx.doi.org/10.1007/978-3-030-58452-8_13
JOSEPH K J, KHAN S, KHAN F S, et al. Towards open world object detection [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 5830-5840. doi: 10.1109/cvpr46437.2021.00577http://dx.doi.org/10.1109/cvpr46437.2021.00577
WU Y, CHEN Y P, YUAN L, et al. Rethinking classification and localization for object detection [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 10186-10195. doi: 10.1109/cvpr42600.2020.01020http://dx.doi.org/10.1109/cvpr42600.2020.01020
DANELLJAN M, VAN GOOL L, TIMOFTE R. Probabilistic regression for visual tracking [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 7183-7192. doi: 10.1109/cvpr42600.2020.00721http://dx.doi.org/10.1109/cvpr42600.2020.00721
贺愉婷,车进,吴金蔓.基于YOLOv5和重识别的行人多目标跟踪方法[J].液晶与显示,2022,37(7):880-890. doi: 10.37188/CJLCD.2022-0025http://dx.doi.org/10.37188/CJLCD.2022-0025
HE Y T, CHE J, WU J M. Pedestrian multi-target tracking method based on YOLOv5 and person re-identification [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(7): 880-890. (in Chinese). doi: 10.37188/CJLCD.2022-0025http://dx.doi.org/10.37188/CJLCD.2022-0025
王浩桐,郭中华.改进SSD的飞机遥感图像目标检测[J].液晶与显示,2022,37(1):116-127. doi: 10.37188/CJLCD.2021-0203http://dx.doi.org/10.37188/CJLCD.2021-0203
WANG H T, GUO Z H. Improved SSD based aircraft remote sensing image target detection [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(1): 116-127. (in Chinese). doi: 10.37188/CJLCD.2021-0203http://dx.doi.org/10.37188/CJLCD.2021-0203
朱威,王立凯,靳作宝,等.引入注意力机制的轻量级小目标检测网络[J].光学 精密工程,2022,30(8):998-1010. doi: 10.37188/OPE.20223008.0998http://dx.doi.org/10.37188/OPE.20223008.0998
ZHU W, WANG L K, JIN Z B, et al. Lightweight small object detection network with attention mechanism [J]. Optics and Precision Engineering, 2022, 30(8): 998-1010. (in Chinese). doi: 10.37188/OPE.20223008.0998http://dx.doi.org/10.37188/OPE.20223008.0998
任彬,王宇庆,丛振,等.基于MPSOC的航空图像目标检测系统设计[J].液晶与显示,2021,36(7):1006-1017. doi: 10.37188/CJLCD.2020-0310http://dx.doi.org/10.37188/CJLCD.2020-0310
REN B, WANG Y Q, CONG Z, et al. Design of aerial image target detection system based on MPSOC [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(7): 1006-1017. (in Chinese). doi: 10.37188/CJLCD.2020-0310http://dx.doi.org/10.37188/CJLCD.2020-0310
GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142-158. doi: 10.1109/tpami.2015.2437384http://dx.doi.org/10.1109/tpami.2015.2437384
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/tpami.2016.2577031http://dx.doi.org/10.1109/tpami.2016.2577031
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 779-788. doi: 10.1109/cvpr.2016.91http://dx.doi.org/10.1109/cvpr.2016.91
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 7263-7271. doi: 10.1109/cvpr.2017.690http://dx.doi.org/10.1109/cvpr.2017.690
REDMON J, FARHADI A. YOLOv3: an incremental improvement [J]. arXiv , 2018: 1804.02767. doi: 10.1109/cvpr.2017.690http://dx.doi.org/10.1109/cvpr.2017.690
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]//14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. doi: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2
JEONG J, PARK H, KWAK N. Enhancement of SSD by concatenating feature maps for object detection [C]//British Machine Vision Conference 2017. London: BMVA Press, 2017. doi: 10.5244/c.31.76http://dx.doi.org/10.5244/c.31.76
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125. doi: 10.1109/cvpr.2017.106http://dx.doi.org/10.1109/cvpr.2017.106
FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector [J]. arXiv, 2017: 1701.06659.
陈欣,万敏杰,马超,等.采用多尺度特征融合SSD的遥感图像小目标检测[J].光学 精密工程,2021,29(11):2672-2682. doi: 10.37188/OPE.20212911.2672http://dx.doi.org/10.37188/OPE.20212911.2672
CHEN X, WAN M J, MA C, et al. Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector [J]. Optics and Precision Engineering, 2021, 29(11): 2672-2682. (in Chinese). doi: 10.37188/OPE.20212911.2672http://dx.doi.org/10.37188/OPE.20212911.2672
PARK J, WOO S, LEE J Y, et al. BAM: Bottleneck attention module [J]. arXiv, 2018: 1807.06514.
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. doi: 10.1109/tpami.2019.2913372http://dx.doi.org/10.1109/tpami.2019.2913372
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization [J]. International Journal of Computer Vision, 2020, 128(2): 336-359. doi: 10.1007/s11263-019-01228-7http://dx.doi.org/10.1007/s11263-019-01228-7
0
浏览量
142
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构