1.西湖大学 工学院, 浙江 杭州 310024
[ "范扬扬(1995—),男,安徽阜阳人,博士研究生,2019年于天津大学获得学士学位,主要从事刺激响应液晶高分子方面的研究。E-mail:fanyangyang@westlake.edu.cn" ]
[ "吕久安(1982—),男,河南焦作人,博士,特聘研究员,2016年于复旦大学获得博士学位,主要从事智能形变高分子材料及其功能器件方面的研究。E-mail:lvjiuan@westlake.edu.cn" ]
扫 描 看 全 文
范扬扬, 吕久安. 响应形变液晶高分子的取向方法和功能开发[J]. 液晶与显示, 2023,38(1):60-76.
FAN Yang-yang, LÜ Jiu-an. Alignment methods and function development of deformable liquid crystal polymers[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):60-76.
范扬扬, 吕久安. 响应形变液晶高分子的取向方法和功能开发[J]. 液晶与显示, 2023,38(1):60-76. DOI: 10.37188/CJLCD.2022-0099.
FAN Yang-yang, LÜ Jiu-an. Alignment methods and function development of deformable liquid crystal polymers[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):60-76. DOI: 10.37188/CJLCD.2022-0099.
液晶高分子是同时具有液晶各向异性和高分子力学特性的功能高分子。在液晶高分子中引入具有光化学异构化或者光热响应的结构单元,可以使其在光或者热刺激下发生相转变,引发宏观形状变化。通过一步或两步的取向方法可以对液晶高分子中液晶基元的取向方向进行调控,实现材料的变形编程。液晶高分子形态上的变化在仿生软机器人、微流控、柔性执行器、结构色和防伪等领域有潜在的应用价值。本文介绍了液晶高分子主要的取向技术和开发出的基于形状变化的器件功能,并展望了液晶高分子形变材料在高新科技领域的应用前景。
Liquid crystal polymers (LCPs) are functional polymers that have both the orientational order of liquid crystal and mechanical properties of polymers. The introduction of structural units with photochemical isomerization or photothermal response into liquid crystal polymers can make them undergo phase transition under light or thermal stimulation, inducing macroscopic deformation. After LCPs are oriented by one-step or two-step alignment methods, the alignment of the LCPs can be programmed. Shape changing of LCPs has potential applications in the fields of biomimetic soft robots, microfluidics, soft actuators, structural color and anti-counterfeiting. This review introduces the major orientation techniques for liquid crystal polymers and developed shape-change-based functions, and finally, an outlook of LCPs in future technological applications is proposed.
液晶高分子执行器微流控智能材料
liquid crystal polymersactuatorsmicrofluidicssmart materials
SUN X M, WANG W, QIU L B, et al. Unusual reversible photomechanical actuation in polymer/nanotube composites [J]. Angewandte Chemie International Edition, 2012, 51(34): 8520-8524. doi: 10.1002/anie.201201975http://dx.doi.org/10.1002/anie.201201975
SERAK S, TABIRYAN N, VERGARA R, et al. Liquid crystalline polymer cantilever oscillators fueled by light [J]. Soft Matter, 2010, 6(4): 779-783. doi: 10.1039/b916831ahttp://dx.doi.org/10.1039/b916831a
KONDO M, SUGIMOTO M, YAMADA M, et al. Effect of concentration of photoactive chromophores on photomechanical properties of crosslinked azobenzene liquid-crystalline polymers [J]. Journal of Materials Chemistry, 2010, 20(1): 117-122. doi: 10.1039/b917342khttp://dx.doi.org/10.1039/b917342k
WANG Z J, HE Q G, WANG Y, et al. Programmable actuation of liquid crystal elastomers via “living” exchange reaction [J]. Soft Matter, 2019, 15(13): 2811-2816. doi: 10.1039/c9sm00322chttp://dx.doi.org/10.1039/c9sm00322c
YANG L Q, SETYOWATI K, LI A, et al. Reversible infrared actuation of carbon nanotube-liquid crystalline elastomer nanocomposites [J]. Advanced Materials, 2008, 20(12): 2271-2275. doi: 10.1002/adma.200702953http://dx.doi.org/10.1002/adma.200702953
BOOTHBY J M, GAGNON J C, MCDOWELL E, et al. An untethered soft robot based on liquid crystal elastomers [J]. Soft Robotics, 2022, 9(1): 154-162. doi: 10.1089/soro.2020.0135http://dx.doi.org/10.1089/soro.2020.0135
SPILLMANN C M, NACIRI J, MARTIN B D, et al. Stacking nematic elastomers for artificial muscle applications [J]. Sensors and Actuators A: Physical, 2007, 133(2): 500-505. doi: 10.1016/j.sna.2006.04.045http://dx.doi.org/10.1016/j.sna.2006.04.045
FINKELMANN H, SHAHINPOOR M. Electrically controllable liquid crystal elastomer-graphite composite artifical muscles [C]//Proceedings of SPIE 4695, Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD). San Diego: SPIE, 2002: 459-464. doi: 10.1117/12.475190http://dx.doi.org/10.1117/12.475190
DE GENNES P G. Possibilites offertes par la reticulation de polymeres en presence d'un cristal liquide [J]. Physics Letters A, 1969, 28(11): 725-726. doi: 10.1016/0375-9601(69)90584-2http://dx.doi.org/10.1016/0375-9601(69)90584-2
FINKELMANN H, KOCK H J, REHAGE G. Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers—a new type of liquid crystalline material [J]. Die Makromolekulare Chemie, Rapid Communications, 1981, 2(4): 317-322. doi: 10.1002/marc.1981.030020413http://dx.doi.org/10.1002/marc.1981.030020413
DE GENNES P G, PROST J. The Physics of Liquid Crystals [M]. Oxford: Oxford University Press, 1993.
POHL L, EIDENSCHINK R, KRAUSE J, et al. Nematic liquid crystals with positive dielectric and negative diamagnetic anisotropy [J]. Physics Letters A, 1978, 65(2): 169-172. doi: 10.1016/0375-9601(78)90608-4http://dx.doi.org/10.1016/0375-9601(78)90608-4
LEGGE C H, DAVIS F J, MITCHELL G R. Memory effects in liquid crystal elastomers [J]. Journal de Physique II, 1991, 1(10): 1253-1261. doi: 10.1051/jp2:1991131http://dx.doi.org/10.1051/jp2:1991131
YANG H, BUGUIN A, TAULEMESSE J M, et al. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions [J]. Journal of the American Chemical Society, 2009, 131(41): 15000-15004. doi: 10.1021/ja905363fhttp://dx.doi.org/10.1021/ja905363f
YAO Y X, WATERS J T, SHNEIDMAN A V, et al. Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(51): 12950-12955. doi: 10.1073/pnas.1811823115http://dx.doi.org/10.1073/pnas.1811823115
GE S J, ZHAO T P, WANG M, et al. A homeotropic main-chain tolane-type liquid crystal elastomer film exhibiting high anisotropic thermal conductivity [J]. Soft Matter, 2017, 13(32): 5463-5468. doi: 10.1039/c7sm01154ghttp://dx.doi.org/10.1039/c7sm01154g
YUSUF Y, KAI S. Electro-opto-mechanical effects in swollen polydomain side chain liquid crystal elastomers[J].AIP Conference Proceedings, 2012, 1454(1): 290-293.
BRÖMMEL F, BENZIE P, OSTERWINTER G J, et al. Orientation behaviour of the minor director of homeotropically oriented nematic elastomers in mechanical fields [J]. Soft Matter, 2013, 9(9): 2646-2651. doi: 10.1039/c2sm27356jhttp://dx.doi.org/10.1039/c2sm27356j
BRANNUM M T, STEELE A M, VENETOS M C, et al. Light control with liquid crystalline elastomers [J]. Advanced Optical Materials, 2019, 7(6): 1801683. doi: 10.1002/adom.201801683http://dx.doi.org/10.1002/adom.201801683
LIU D Q, BASTIAANSEN C W M, DEN TOONDER J M J, et al. Photo‐switchable surface topologies in chiral nematic coatings [J]. Angewandte Chemie International Edition, 2012, 51(4): 892-896. doi: 10.1002/anie.201105101http://dx.doi.org/10.1002/anie.201105101
SCHADT M. Liquid crystal displays, LC-materials and LPP photo-alignment [J]. Molecular Crystals and Liquid Crystals, 2017, 647(1): 253-268. doi: 10.1080/15421406.2017.1289604http://dx.doi.org/10.1080/15421406.2017.1289604
CHIGRINOV V G, KOZENKOV V M, KWOK H S. Photoalignment of Liquid Crystalline Materials: Physics and Applications [M]. Chichester: John Wiley & Sons, 2008. doi: 10.1002/9780470751800http://dx.doi.org/10.1002/9780470751800
GIBBONS W M, SHANNON P J, SUN S T, et al. Surface-mediated alignment of nematic liquid crystals with polarized laser light [J]. Nature, 1991, 351(6321): 49-50. doi: 10.1038/351049a0http://dx.doi.org/10.1038/351049a0
SEKI T. New strategies and implications for the photoalignment of liquid crystalline polymers [J]. Polymer Journal, 2014, 46(11): 751-768. doi: 10.1038/pj.2014.68http://dx.doi.org/10.1038/pj.2014.68
KOWALSKI B A, TONDIGLIA V P, GUIN T, et al. Voxel resolution in the directed self-assembly of liquid crystal polymer networks and elastomers [J]. Soft Matter, 2017, 13(24): 4335-4340. doi: 10.1039/c7sm00663bhttp://dx.doi.org/10.1039/c7sm00663b
GUO Y B, JIANG M, PENG C H, et al. High‐resolution and high‐throughput plasmonic photopatterning of complex molecular orientations in liquid crystals [J]. Advanced Materials, 2016, 28(12): 2353-2358. doi: 10.1002/adma.201506002http://dx.doi.org/10.1002/adma.201506002
WARE T H, MCCONNEY M E, WIE J J, et al. Voxelated liquid crystal elastomers [J]. Science, 2015, 347(6225): 982-984. doi: 10.1126/science.1261019http://dx.doi.org/10.1126/science.1261019
FAETTI S, SAKAMOTO K, USAMI K. Very strong azimuthal anchoring of nematic liquid crystals on uv-aligned polyimide layers [J]. Physical Review E, 2007, 75(5): 051704. doi: 10.1103/physreve.75.051704http://dx.doi.org/10.1103/physreve.75.051704
XIA Y, CEDILLO‐SERVIN G, KAMIEN R D, et al. Guided folding of nematic liquid crystal elastomer sheets into 3D via patterned 1D microchannels [J]. Advanced Materials, 2016, 28(43): 9637-9643. doi: 10.1002/adma.201603751http://dx.doi.org/10.1002/adma.201603751
KUMAR S, KIM J H, SHI Y S. What aligns liquid crystals on solid substrates? The role of surface roughness anisotropy [J]. Physical Review Letters, 2005, 94(7): 077803. doi: 10.1103/physrevlett.94.077803http://dx.doi.org/10.1103/physrevlett.94.077803
IAMSAARD S, ASSHOFF S J, MATT B, et al. Conversion of light into macroscopic helical motion [J]. Nature Chemistry, 2014, 6(3): 229-235. doi: 10.1038/nchem.1859http://dx.doi.org/10.1038/nchem.1859
GUIN T, SETTLE M J, KOWALSKI B A, et al. Layered liquid crystal elastomer actuators [J]. Nature Communications, 2018, 9(1): 2531. doi: 10.1038/s41467-018-04911-4http://dx.doi.org/10.1038/s41467-018-04911-4
CHEN J L, CRANTON W, FIHN M. Handbook of Visual Display Technology [M]. Cham: Springer, 2016. doi: 10.1007/978-3-319-14346-0http://dx.doi.org/10.1007/978-3-319-14346-0
THOMSEN D L, KELLER P, NACIRI J, et al. Liquid crystal elastomers with mechanical properties of a muscle [J]. Macromolecules, 2001, 34(17): 5868-5875. doi: 10.1021/ma001639qhttp://dx.doi.org/10.1021/ma001639q
MURRAY B S, PELCOVITS R A, ROSENBLATT C. Creating arbitrary arrays of two-dimensional topological defects [J]. Physical Review E, 2014, 90(5): 052501. doi: 10.1103/physreve.90.052501http://dx.doi.org/10.1103/physreve.90.052501
AHARONI H, XIA Y, ZHANG X Y, et al. Universal inverse design of surfaces with thin nematic elastomer sheets [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7206-7211. doi: 10.1073/pnas.1804702115http://dx.doi.org/10.1073/pnas.1804702115
KÜPFER J, FINKELMANN H. Nematic liquid single crystal elastomers [J]. Die Makromolekulare Chemie, Rapid Communications, 1991, 12(12): 717-726.
CAMARGO C J, CAMPANELLA H, MARSHALL J E, et al. Localised actuation in composites containing carbon nanotubes and liquid crystalline elastomers [J]. Macromolecular Rapid Communications, 2011, 32(24): 1953-1959. doi: 10.1002/marc.201100578http://dx.doi.org/10.1002/marc.201100578
KOTIKIAN A, TRUBY R L, BOLEY J W, et al. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order [J]. Advanced Materials, 2018, 30(10): 1706164. doi: 10.1002/adma.201706164http://dx.doi.org/10.1002/adma.201706164
YAKACKI C M, SAED M, NAIR D P, et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction [J]. RSC Advances, 2015, 5(25): 18997-19001. doi: 10.1039/c5ra01039jhttp://dx.doi.org/10.1039/c5ra01039j
AHN C, LIANG X D, CAI S Q. Inhomogeneous stretch induced patterning of molecular orientation in liquid crystal elastomers [J]. Extreme Mechanics Letters, 2015, 5(2): 30-36. doi: 10.1016/j.eml.2015.09.007http://dx.doi.org/10.1016/j.eml.2015.09.007
BARNES M, VERDUZCO R. Direct shape programming of liquid crystal elastomers [J]. Soft Matter, 2019, 15(5): 870-879. doi: 10.1039/c8sm02174khttp://dx.doi.org/10.1039/c8sm02174k
AMBULO C P, BURROUGHS J J, BOOTHBY J M, et al. Four-dimensional printing of liquid crystal elastomers [J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37332-37339. doi: 10.1021/acsami.7b11851http://dx.doi.org/10.1021/acsami.7b11851
GANTENBEIN S, MASANIA K, WOIGK W, et al. Three-dimensional printing of hierarchical liquid-crystal-polymer structures [J]. Nature, 2018, 561(7722): 226-230. doi: 10.1038/s41586-018-0474-7http://dx.doi.org/10.1038/s41586-018-0474-7
LI S, BAI H D, LIU Z, et al. Digital light processing of liquid crystal elastomers for self-sensing artificial muscles [J]. Science Advances, 2021, 7(30): eabg3677. doi: 10.1126/sciadv.abg3677http://dx.doi.org/10.1126/sciadv.abg3677
YAMADA M, KONDO M, MIYASATO R, et al. Photomobile polymer materials—various three-dimensional movements [J]. Journal of Materials Chemistry, 2009, 19(1): 60-62. doi: 10.1039/b815289fhttp://dx.doi.org/10.1039/b815289f
LU X X, GUO S W, TONG X, et al. Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators [J]. Advanced Materials, 2017, 29(28): 1606467. doi: 10.1002/adma.201606467http://dx.doi.org/10.1002/adma.201606467
ROGÓŻ M, ZENG H, XUAN C, et al. Light-driven soft robot mimics caterpillar locomotion in natural scale [J]. Advanced Optical Materials, 2016, 4(11): 1689-1694. doi: 10.1002/adom.201600503http://dx.doi.org/10.1002/adom.201600503
ZENG H, WANI O M, WASYLCZYK P, et al. Light-driven, caterpillar-inspired miniature inching robot [J]. Macromolecular Rapid Communications, 2018, 39(1): 1700224. doi: 10.1002/marc.201700224http://dx.doi.org/10.1002/marc.201700224
GUO H S, PRIIMAGI A, ZENG H. Optically controlled latching and launching in soft actuators [J]. Advanced Functional Materials, 2022, 32(17): 2108919. doi: 10.1002/adfm.202108919http://dx.doi.org/10.1002/adfm.202108919
BHAGAT A A S, BOW H, HOU H W, et al. Microfluidics for cell separation [J]. Medical & Biological Engineering & Computing, 2010, 48(10): 999-1014. doi: 10.1007/s11517-010-0611-4http://dx.doi.org/10.1007/s11517-010-0611-4
SACKMANN E K, FULTON A L, BEEBE D J. The present and future role of microfluidics in biomedical research [J]. Nature, 2014, 507(7491): 181-189. doi: 10.1038/nature13118http://dx.doi.org/10.1038/nature13118
BAIGL D. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives [J]. Lab on A Chip, 2012, 12(19): 3637-3653. doi: 10.1039/c2lc40596bhttp://dx.doi.org/10.1039/c2lc40596b
ZENG S J, LI B W, SU X O, et al. Microvalve-actuated precise control of individual droplets in microfluidic devices [J]. Lab on a Chip, 2009, 9(10): 1340-1343. doi: 10.1039/b821803jhttp://dx.doi.org/10.1039/b821803j
SÁNCHEZ-FERRER A, FISCHL T, STUBENRAUCH M, et al. Liquid-crystalline elastomer microvalve for microfluidics [J]. Advanced Materials, 2011, 23(39): 4526-4530. doi: 10.1002/adma.201102277http://dx.doi.org/10.1002/adma.201102277
LV J A, LIU Y Y, WEI J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators [J]. Nature, 2016, 537(7619): 179-184. doi: 10.1038/nature19344http://dx.doi.org/10.1038/nature19344
LIU Q, YU G D, ZHU C Y, et al. An integrated droplet manipulation platform with photodeformable microfluidic channels [J]. Small Methods, 2021, 5(12): 2100969. doi: 10.1002/smtd.202100969http://dx.doi.org/10.1002/smtd.202100969
WEIGERT F. Uber einen neuen effekt der strahlung in lichtempfindlichen schichten [J]. Verh. Dtsch. Phys. Ges., 1919, 21: 479-491. doi: 10.1007/bf01333783http://dx.doi.org/10.1007/bf01333783
HU Z M, FANG W, LI Q Y, et al. Optocapillarity-driven assembly and reconfiguration of liquid crystal polymer actuators [J]. Nature Communications, 2020, 11(1): 5780. doi: 10.1038/s41467-020-19522-1http://dx.doi.org/10.1038/s41467-020-19522-1
LIU L, LIU M H, DENG L L, et al. Near-infrared chromophore functionalized soft actuator with ultrafast photoresponsive speed and superior mechanical property [J]. Journal of the American Chemical Society, 2017, 139(33): 11333-11336. doi: 10.1021/jacs.7b06410http://dx.doi.org/10.1021/jacs.7b06410
SÁNCHEZ-FERRER A, FISCHL T, STUBENRAUCH M, et al. Photo-crosslinked side-chain liquid-crystalline elastomers for microsystems [J]. Macromolecular Chemistry and Physics, 2009, 210(20): 1671-1677. doi: 10.1002/macp.200900308http://dx.doi.org/10.1002/macp.200900308
HE Q G, WANG Z J, WANG Y, et al. Electrically controlled liquid crystal elastomer-based soft tubular actuator with multimodal actuation [J]. Science Advances, 2019, 5(10): eaax5746. doi: 10.1126/sciadv.aax5746http://dx.doi.org/10.1126/sciadv.aax5746
HU J, YU M M, WANG M Q, et al. Design, regulation, and applications of soft actuators based on liquid-crystalline polymers and their composites [J]. ACS Applied Materials & Interfaces, 2022, 14(11): 12951-12963. doi: 10.1021/acsami.1c25103http://dx.doi.org/10.1021/acsami.1c25103
SONG T F, LEI H Y, CLANCY A J, et al. Supramolecular hydrogen bond enables Kapton nanofibers to reinforce liquid-crystalline polymers for light-fueled flight [J]. Nano Energy, 2021, 87: 106207. doi: 10.1016/j.nanoen.2021.106207http://dx.doi.org/10.1016/j.nanoen.2021.106207
MA B, XU C T, CUI L S, et al. Magnetic printing of liquid metal for perceptive soft actuators with embodied intelligence [J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5574-5582. doi: 10.1021/acsami.0c20418http://dx.doi.org/10.1021/acsami.0c20418
CAI F, CHEN Y X, WANG W Z, et al. Macroscopic regulation of hierarchical nanostructures in liquid-crystalline block copolymers towards functional materials [J]. Chinese Journal of Polymer Science, 2021, 39(4): 397-416. doi: 10.1007/s10118-021-2531-1http://dx.doi.org/10.1007/s10118-021-2531-1
CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub‐25 nm vias and trenches in polymers [J]. Applied Physics Letters, 1995, 67(21): 3114-3116. doi: 10.1063/1.114851http://dx.doi.org/10.1063/1.114851
TAMAOKI N. Cholesteric liquid crystals for color information technology [J]. Advanced Materials, 2001, 13(15): 1135-1147. doi: 10.1002/1521-4095(200108)13:15<1135::aid-adma1135>3.0.co;2-shttp://dx.doi.org/10.1002/1521-4095(200108)13:15<1135::aid-adma1135>3.0.co;2-s
YANG B W, CAI F, HUANG S, et al. Athermal and soft multi-nanopatterning of azopolymers: phototunable mechanical properties [J]. Angewandte Chemie International Edition, 2020, 59(10): 4035-4042. doi: 10.1002/anie.201914201http://dx.doi.org/10.1002/anie.201914201
KIM S U, LEE Y J, LIU J Q, et al. Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers [J]. Nature Materials, 2022, 21(1): 41-46. doi: 10.1038/s41563-021-01075-3http://dx.doi.org/10.1038/s41563-021-01075-3
0
浏览量
202
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构