1.五邑大学 智能制造学部, 广东 江门 529020
2.伍伦贡大学 电气计算机与通信工程学院, 澳大利亚 伍伦贡 2522
3.嘉应学院 物理与电子工程学院, 广东 梅州 514015
扫 描 看 全 文
ZHAN Xiao-jiang, GAN Chu-li, DING Yi, et al. Laser speckle noise suppression method based on empirical mode decomposition. [J]. Chinese Journal of Liquid Crystals and Displays 38(4):495-506(2023)
ZHAN Xiao-jiang, GAN Chu-li, DING Yi, et al. Laser speckle noise suppression method based on empirical mode decomposition. [J]. Chinese Journal of Liquid Crystals and Displays 38(4):495-506(2023) DOI: 10.37188/CJLCD.2022-0250.
为抑制激光散斑噪声对定量相位重建精度的影响,本文基于经验模态分解提出了一种激光散斑噪声抑制方法。该方法只需采集一张全息图像且无需添加额外硬件设备,避免了寻找最优处理参数的复杂过程。首先,采用经验模态分解突出图像细节信息。其次,使用边缘检测克服各向异性扩散方程中梯度算子抗噪声能力不强、不能识别伪边缘等问题,对细节突出的图像进行边缘检测。最后,由高精度的边缘检测结果引导扩散去噪过程达到更好的散斑抑制效果。实验结果表明,经过本文方法处理后,重建相位的结构相似性提高了12.900 0%,边缘保持指数提高了14.386 1%,散斑抑制指数降低了8.129 9%,并且相位截面曲线与原始相位最接近。本文所提出的方法不仅具备更好的去噪效果,而且更有效地保留了细节信息,相位重建的精度更高。
In order to suppress the influence of laser speckle noise on the accuracy of quantitative phase reconstruction, a laser speckle noise suppression method based on empirical mode decomposition is proposed in this paper. The method only needs to acquire a holographic image without adding additional hardware equipment and avoids the complicated process of finding optimal processing parameters. Firstly, empirical mode decomposition is used to highlight image details. Secondly, edge detection is used to overcome the problems of poor anti-noise capability and the inability to identify false edges of gradient operators in the anisotropic diffusion equation, and edge detection is performed on images with prominent details. Finally, the diffusion denoising process is guided by the high-precision edge detection results to achieve better speckle suppression. The experimental results show that after processing by the method in this paper, the structural similarity of the reconstructed phase is increased by 12.900 0%, the edge preservation index is increased by 14.386 1%, the speckle suppression index is reduced by 8.129 9%, and the phase cross-section curve is the closest to the original phase. The method proposed in this paper not only has a better denoising effect but also preserves the detailed information more effectively, and the accuracy of phase reconstruction is higher.
散斑噪声抑制经验模态分解边缘检测各向异性扩散方程
speckle noise suppressionempirical mode decompositionedge detectionanisotropic diffusion equation
POPESCU G. Quantitative Phase Imaging of Cells and Tissues [M]. New York: McGraw-Hill, 2011: 121-138.
TRUSIAK M, MICO V, GARCIA J, et al. Quantitative phase imaging by single-shot Hilbert-Huang phase microscopy [J]. Optics Letters, 2016, 41(18): 4344-4347. doi: 10.1364/ol.41.004344http://dx.doi.org/10.1364/ol.41.004344
FRATZ M, SEYLER T, BERTZ A, et al. Digital holography in production: an overview [J]. Light: Advanced Manufacturing, 2021, 2(3): 283-295. doi: 10.37188/lam.2021.015http://dx.doi.org/10.37188/lam.2021.015
LUO Z P, MA J S, SU P, et al. Digital holographic phase imaging based on phase iteratively enhanced compressive sensing [J]. Optics Letters, 2019, 44(6): 1395-1398. doi: 10.1364/ol.44.001395http://dx.doi.org/10.1364/ol.44.001395
CHEN N, WANG C L, HEIDRICH W. Holographic 3D particle imaging with model-based deep network [J]. IEEE Transactions on Computational Imaging, 2021, 7: 288-296. doi: 10.1109/tci.2021.3063870http://dx.doi.org/10.1109/tci.2021.3063870
ZUO C, QIAN J M, FENG S J, et al. Deep learning in optical metrology: a review [J]. Light: Science & Applications, 2022, 11(1): 39. doi: 10.1038/s41377-022-00714-xhttp://dx.doi.org/10.1038/s41377-022-00714-x
LUO Y, ZHAO Y F, LI J X, et al. Computational imaging without a computer: seeing through random diffusers at the speed of light [J]. eLight, 2022, 2(1): 4. doi: 10.1186/s43593-022-00012-4http://dx.doi.org/10.1186/s43593-022-00012-4
ZHANG Y Y, HUANG Z Z, JIN S Z, et al. Autofocusing of in-line holography based on compressive sensing [J]. Optics and Lasers in Engineering, 2021, 146: 106678. doi: 10.1016/j.optlaseng.2021.106678http://dx.doi.org/10.1016/j.optlaseng.2021.106678
LI R J, CAO L C. Complex wavefront sensing based on coherent diffraction imaging using vortex modulation [J]. Scientific Reports, 2021, 11(1): 9019. doi: 10.1038/s41598-021-88523-xhttp://dx.doi.org/10.1038/s41598-021-88523-x
DENG D N, QU W J, HE W Q, et al. Phase aberration compensation for digital holographic microscopy based on geometrical transformations [J]. Journal of Optics, 2019, 21(8): 085702. doi: 10.1088/2040-8986/ab2528http://dx.doi.org/10.1088/2040-8986/ab2528
BIANCO V, MEMMOLO P, LEO M, et al. Strategies for reducing speckle noise in digital holography [J]. Light: Science & Applications, 2018, 7: 48. doi: 10.1038/s41377-018-0050-9http://dx.doi.org/10.1038/s41377-018-0050-9
LANGEHANENBERG P, VON BALLY G, KEMPER B. Application of partially coherent light in live cell imaging with digital holographic microscopy [J]. Journal of Modern Optics, 2010, 57(9): 709-717. doi: 10.1080/09500341003605411http://dx.doi.org/10.1080/09500341003605411
FARROKHI H, BOONRUANGKAN J, CHUN B J, et al. Speckle reduction in quantitative phase imaging by generating spatially incoherent laser field at electroactive optical diffusers [J]. Optics Express, 2017, 25(10): 10791-10800. doi: 10.1364/oe.25.010791http://dx.doi.org/10.1364/oe.25.010791
李煊.基于旋转双散射片的数字全息显微成像散斑抑制研究[D].西安:西安理工大学,2020. doi: 10.30919/esee8c722http://dx.doi.org/10.30919/esee8c722
LI X. Research on speckle suppression of digital holographic microscopy imaging based on rotating double diffusers [D]. Xi'an: Xi'an University of Technology, 2020. (in Chinese). doi: 10.30919/esee8c722http://dx.doi.org/10.30919/esee8c722
UZAN A, RIVENSON Y, STERN A, et al. Speckle denoising in digital holography by nonlocal means filtering [J]. Applied Optics, 2013, 52(1): A195-A200. doi: 10.1364/ao.52.00a195http://dx.doi.org/10.1364/ao.52.00a195
刘吉,黄晓慧,武锦辉,等.基于正余弦分解的自适应全变分散斑去噪方法[J].中国激光,2020,47(10):1004004. doi: 10.3788/cjl202047.1004004http://dx.doi.org/10.3788/cjl202047.1004004
LIU J, HUANG X H, WU J H, et al. Adaptive total variation speckle denoising method based on sine-cosine decomposition [J]. Chinese Journal of Lasers, 2020, 47(10): 1004004. (in Chinese). doi: 10.3788/cjl202047.1004004http://dx.doi.org/10.3788/cjl202047.1004004
MONTRESOR S, TAHON M, LAURENT A, et al. Computational de-noising based on deep learning for phase data in digital holographic interferometry [J]. APL Photonics, 2020, 5(3): 030802. doi: 10.1063/1.5140645http://dx.doi.org/10.1063/1.5140645
牛瑞,田爱玲,王大森,等.数字全息测量系统的散斑噪声抑制[J].激光与光电子学进展,2022,59(16):1609002. doi: 10.3788/lop202259.1609002http://dx.doi.org/10.3788/lop202259.1609002
NIU R, TIAN A L, WANG D S, et al. Speckle noise suppression of digital holography measuring system [J]. Laser & Optoelectronics Progress, 2022, 59(16): 1609002. (in Chinese). doi: 10.3788/lop202259.1609002http://dx.doi.org/10.3788/lop202259.1609002
吴育民,段海燕,文永富,等.再现图像细节抑制散斑噪声技术研究[J].影像科学与光化学,2018,36(2):187-191. doi: 10.7517/j.issn.1674-0475.2018.02.008http://dx.doi.org/10.7517/j.issn.1674-0475.2018.02.008
WU Y M, DUAN H Y, WEN Y F, et al. Study on denoising technology to reproduction image detail [J]. Imaging Science and Photochemistry, 2018, 36(2): 187-191. (in Chinese). doi: 10.7517/j.issn.1674-0475.2018.02.008http://dx.doi.org/10.7517/j.issn.1674-0475.2018.02.008
ARSENAULT H H, APRIL G. Properties of speckle integrated with a finite aperture and logarithmically transformed [J]. Journal of the Optical Society of America, 1976, 66(11): 1160-1163. doi: 10.1364/josa.66.001160http://dx.doi.org/10.1364/josa.66.001160
王灿进,石宁宁,孙涛.同态非局部滤波在激光主动成像散斑抑制中的应用研究[J].液晶与显示,2016,31(2):193-200.
WANG C J, SHI N N, SUN T. Application of homomorphic non-local filters in speckle noise suppression for laser active imaging [J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(2): 193-200. (in Chinese)
PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639. doi: 10.1109/34.56205http://dx.doi.org/10.1109/34.56205
DENG L Z, ZHU H, YANG Z, et al. Hessian matrix-based fourth-order anisotropic diffusion filter for image denoising [J]. Optics & Laser Technology, 2019, 110: 184-190. doi: 10.1016/j.optlastec.2018.08.043http://dx.doi.org/10.1016/j.optlastec.2018.08.043
ABDULLAH YAHYA A, TAN J Q, SU B Y, et al. Image edge detection method based on anisotropic diffusion and total variation models [J]. The Journal of Engineering, 2019, 2019(2): 455-460. doi: 10.1049/joe.2018.5345http://dx.doi.org/10.1049/joe.2018.5345
陈一虎.P-M扩散方程图像去噪方法分析[J].宝鸡文理学院学报(自然科学版),2010,30(4):14-17.
CHEN Y H. An analysis of the method of P-M diffusion equation for image denoising [J]. Journal of Baoji University of Arts and Sciences (Natural Science Edition), 2010, 30(4): 14-17. (in Chinese)
HUANG Z Z, CAO L C. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction [J]. Optics and Lasers in Engineering, 2020, 130: 106090. doi: 10.1016/j.optlaseng.2020.106090http://dx.doi.org/10.1016/j.optlaseng.2020.106090
彭景,张蓉竹.干涉检测中常用解包裹算法噪声处理能力比较[J].光学与光电技术,2019,17(4):77-83.
PENG J, ZHANG R Z. Comparison on the noise processing ability of common unwrapping algorithms in interference detection [J]. Optics & Optoelectronic Technology, 2019, 17(4): 77-83. (in Chinese)
马树军,刘炜华,周鹏飞.一种离轴数字全息显微相位自动补偿方法[J].东北大学学报(自然科学版),2019,40(6):847-851.
MA S J, LIU W H, ZHOU P F. Off-Axis digital holographic microscopic phase automatic compensation method [J]. Journal of Northeastern University (Natural Science), 2019, 40(6): 847-851. (in Chinese)
HORÉ A, ZIOU D. Image quality metrics: PSNR vs. SSIM [C]//Proceedings of the 2010 20th International Conference on Pattern Recognition. Istanbul: IEEE, 2010: 2366-2369. doi: 10.1109/icpr.2010.579http://dx.doi.org/10.1109/icpr.2010.579
金鑫,张景雄.自适应加权中值滤波的InSAR干涉图去噪方法[J].测绘地理信息,2016,41(3):12-15.
JIN X, ZHANG J X. A self-adaptive weighted-median filter for InSAR interferograms [J]. Journal of Geomatics, 2016, 41(3): 12-15. (in Chinese)
汤春明,张洪科,于翔,等.反射式离轴数字全息再现像中的噪声抑制[J].半导体光电,2014,35(4):745-748.
TANG C M, ZHANG H K, YU X, et al. Noise suppression in reflective off-axis digital holographic reconstruction [J]. Semiconductor Optoelectronics, 2014, 35(4): 745-748. (in Chinese)
0
Views
258
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution