
浏览全部资源
扫码关注微信
1.河北地质大学 信息工程学院, 河北 石家庄 050031
2.河北地质大学 人工智能与机器学习研究室, 河北 石家庄 050031
[ "赵战民(1979-), 男, 河北保定人, 硕士, 讲师, 2010年于河北科技大学获得硕士学位, 主要从事智能仪器、机器视觉方面的研究。E-mail:zhaozhanmin@hgu.edu.cn" ]
[ "朱占龙(1984-), 男, 河北石家庄人, 博士, 讲师, 2015年于东南大学获得博士学位, 主要从事图像处理算法研究。E-mail:zhuzl@hgu.edu.cn" ]
收稿日期:2019-10-21,
修回日期:2020-01-06,
录用日期:2020-1-6,
纸质出版日期:2020-05-05
移动端阅览
赵战民, 朱占龙, 王军芬. 改进的基于灰度级的模糊C均值图像分割算法[J]. 液晶与显示, 2020,35(5):499-507.
Zhan-min ZHAO, Zhan-long ZHU, Jun-fen WANG. Improved fuzzy C-means algorithm based ongray-level for image segmentation[J]. Chinese journal of liquid crystals and displays, 2020, 35(5): 499-507.
赵战民, 朱占龙, 王军芬. 改进的基于灰度级的模糊C均值图像分割算法[J]. 液晶与显示, 2020,35(5):499-507. DOI: 10.3788/YJYXS20203505.0499.
Zhan-min ZHAO, Zhan-long ZHU, Jun-fen WANG. Improved fuzzy C-means algorithm based ongray-level for image segmentation[J]. Chinese journal of liquid crystals and displays, 2020, 35(5): 499-507. DOI: 10.3788/YJYXS20203505.0499.
基于灰度级的模糊C均值算法是一种快速的图像分割算法。因为无损检测图像灰度分布不均衡,该算法不能有效分割图像中的目标与背景,故提出一种改进的基于灰度级的模糊C均值算法(IFCMG)。首先,利用灰度级像素数和隶属度构造类的总隶属度表达式并将其融入目标函数中以均衡化目标像素和灰度像素对目标函数的贡献。接着,推导基于新目标函数的隶属度和聚类中心。然后,考虑到类的密度也会影响聚类结果,设计类的紧密度表征形式并将其融入聚类进程。最后,采用无损检测图像进行分割实验。对于每幅图像,本文算法具有较高的F_value指标值。利用综合评价公式对所有F_value值进行评价,本文算法综合评价值比对比算法分别高出26.13%,16.46%,13.75%,25.10%。本文算法能够有效分割具有灰度分布不均衡特征的无损检测图像,扩展了基于灰度级的模糊C均值聚类算法的应用范围。
Fuzzy c-means algorithm based on gray-level is a fast image segmentation algorithm
which cannot effectively segment the object pixels and background pixels of the non-destructive testing (NDT) image with the characteristics of unbalanced gray distribution. Then an improved fuzzy C-means algorithm based on gray-level (IFCMG) is proposed. Firstly
the expression of total membership degree of each cluster is constructed by using pixel numbers and membership degrees of gray-level
and it is integrated into the objective function
which can equalize the contribution of the object pixels and background pixels to the objective function. Secondly
the new membership degree and cluster center are strictly deduced. And then
considering that the density of clusters also affects the clustering results
we design the formula of compactness and integrate it into the clustering process. Finally
the NDT images are used for segmentation experiment. For each image
IFCMG has higher index values of F_value when the images are disturbed by different noise levels. We comprehensively evaluate the values of F_value obtained above
and find that the comprehensively evaluation value of the proposed algorithm is 26.13%
16.46%
13.75% and 25.10% higher than those of the comparison algorithms
respectively. The proposed algorithm can effectively segment NDT images with unbalanced gray distribution
which expands the application scope of fuzzy C-means algorithm based on gray-level.
杨 威 , 马 瑜 , 孔 聪雅 , 等 . 基于分数阶狼群优化的Otsu图像分割算法 . 液晶与显示 , 2019 . 34 ( 7 ): 716 - 723 . http://yjyxs.com/CN/abstract/abstract10499.shtml http://yjyxs.com/CN/abstract/abstract10499.shtml .
W YANG , Y MA , C Y KONG , 等 . Otsu image segmentation based on fractional order WPA . Chinese Journal of Liquid Crystals and Displays , 2019 . 34 ( 7 ): 716 - 723 . http://yjyxs.com/CN/abstract/abstract10499.shtml http://yjyxs.com/CN/abstract/abstract10499.shtml .
F F GUO , X X WANG , J SHEN . Adaptive fuzzy c-means algorithm based on local noise detecting for image segmentation . IET Image Processing , 2016 . 10 ( 4 ): 272 - 279 . DOI: 10.1049/iet-ipr.2015.0236 http://doi.org/10.1049/iet-ipr.2015.0236 .
S KRINIDIS , V CHATZIS . A robust fuzzy slocal information C-means clustering algorithm . IEEE Transactions on Image Processing , 2010 . 19 ( 5 ): 1328 - 1337 . DOI: 10.1109/TIP.2010.2040763 http://doi.org/10.1109/TIP.2010.2040763 .
F ZHAO , J L FAN , H Q LIU . Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation . Expert Systems with Applications , 2014 . 41 ( 9 ): 4083 - 4093 . DOI: 10.1016/j.eswa.2014.01.003 http://doi.org/10.1016/j.eswa.2014.01.003 .
SZILAGYI L, BENYO Z, SZILAGYI S M, et al . MR brain image segmentation using an enhanced fuzzy C-means algorithm[C]// Proceedings of the 25 th Annual International Conference of the IEEE Engineering in Medicine and Biology Society . Cancun: IEEE, 2003: 724-726.
W L CAI , S C CHEN , D Q ZHANG . Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation . Pattern Recognition , 2007 . 40 ( 3 ): 825 - 838 . DOI: 10.1016/j.patcog.2006.07.011 http://doi.org/10.1016/j.patcog.2006.07.011 DOI: 10.1016/j.patcog.2006.07.011 http://doi.org/10.1016/j.patcog.2006.07.011 .
赵 凤 , 范 九伦 . 优选抑制式非局部空间模糊C-均值图像分割方法 . 计算机应用研究 , 2012 . 29 ( 7 ): 2737 - 2739, 2746 . DOI: 10.3969/j.issn.1001-3695.2012.07.092 http://doi.org/10.3969/j.issn.1001-3695.2012.07.092 .
F ZHAO , J L FAN . Selection-suppressed non-local spatial FCM image segmentation method . Application Research of Computers , 2012 . 29 ( 7 ): 2737 - 2739, 2746 . DOI: 10.3969/j.issn.1001-3695.2012.07.092 http://doi.org/10.3969/j.issn.1001-3695.2012.07.092 .
朱 占龙 , 王 军芬 . 基于自适应模糊C均值与后处理的图像分割算法 . 激光与光电子学进展 , 2018 . 55 ( 1 ): 011004 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201801025 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201801025 .
Z L ZHU , J F WANG . Image segmentation based on adaptive fuzzy C-means and post processing correction . Laser & Optoelectronics Progress , 2018 . 55 ( 1 ): 011004 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201801025 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201801025 .
聂 方彦 , 李 建奇 , 张 平凤 , 等 . 一种基于Tsallis相对熵的图像分割阈值选取方法 . 激光与光电子学进展 , 2017 . 54 ( 7 ): 071002 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201707015 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201707015 .
F Y NIE , J Q LI , P F ZHANG , 等 . A threshold selection method for image segmentation based on Tsallis relative entropy . Laser & Optoelectronics Progress , 2017 . 54 ( 7 ): 071002 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201707015 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201707015 .
J C NOORDAM , W H A M VAN DEN BROEK , L M C BUYDENS . Multivariate image segmentation with cluster size insensitive fuzzy C-means . Chemometrics and Intelligent Laboratory Systems , 2002 . 64 ( 1 ): 65 - 78 .
Y LIU , T HOU , F LIU . Improving fuzzy c-means method for unbalanced dataset . Electronics Letters , 2015 . 51 ( 23 ): 1880 - 1882 . DOI: 10.1049/el.2015.1541 http://doi.org/10.1049/el.2015.1541 .
X GENG , D C ZHAN , Z H ZHOU , 等 . Supervised nonlinear dimensionality reduction for visualization and classification . IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 2005 . 35 ( 6 ): 1098 - 1107 . DOI: 10.1109/TSMCB.2005.850151 http://doi.org/10.1109/TSMCB.2005.850151 .
0
浏览量
183
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621