浏览全部资源
扫码关注微信
清华大学 化学系 生命有机磷化学及化学生物学教育部重点实验室, 北京 100084
[ "杨志俊,男,学士,2022年于南开大学获得化学学士学位,同年于天津大学获得化工学士学位,主要从事含动态共价键的高分子、液晶弹性体方面的研究。E-mail:yang-zj22@mails.tsinghua.edu.cn" ]
[ "吉岩,女,博士,副教授,2006年于北京大学获得博士学位,主要从事含动态共价键的高分子、液晶弹性体、高分子纳米复合材料等的研究。E-mail:jiyan@mail.tsinghua.edu.cn" ]
收稿日期:2024-08-15,
修回日期:2024-08-28,
纸质出版日期:2024-12-05
移动端阅览
杨志俊, 吉岩. 液晶弹性体阻尼材料的研究进展[J]. 液晶与显示, 2024,39(12):1689-1707.
YANG Zhijun, JI Yan. Development of liquid crystal elastomer damping materials[J]. Chinese journal of liquid crystals and displays, 2024, 39(12): 1689-1707.
杨志俊, 吉岩. 液晶弹性体阻尼材料的研究进展[J]. 液晶与显示, 2024,39(12):1689-1707. DOI: 10.37188/CJLCD.2024-0236.
YANG Zhijun, JI Yan. Development of liquid crystal elastomer damping materials[J]. Chinese journal of liquid crystals and displays, 2024, 39(12): 1689-1707. DOI: 10.37188/CJLCD.2024-0236.
液晶弹性体凭借其特有的动态力学特性——“软弹性”,在阻尼材料领域表现出独特的阻尼机理与优异的能量耗散行为。液晶基元在外力作用下可以发生偏转,吸收输入能量,从而实现有效的阻尼行为。与传统聚合物相比,液晶弹性体具有更高的阻尼因子与更宽的有效阻尼温度范围,更适用于不同环境与应用场景。液晶弹性体的“速率依赖行为”在高应变速率条件下表现出更高的力学性能以及更优越的能量吸收特性,能够用以构建新型高抗冲设备。取向后的液晶弹性体具有均匀取向的液晶基元,相较于未取向的液晶弹性体能够表现出更突出的阻尼特性,通过3D打印技术还能够制备得到具有取向的块状液晶弹性体。在霍普金森杆实验、震动床实验等测试中,液晶弹性体都表现出优于传统聚合物材料的能量吸收特性。利用现代化加工技术手段,液晶弹性体能被制造成为各种复杂结构,满足对阻尼材料轻量化、高性能化的要求。本文对液晶弹性体的阻尼机理、阻尼特性和动态力学特性进行综述,并对该领域的现存挑战与未来发展进行探讨分析。
Liquid crystal elastomers (LCEs)exhibit a distinctive damping mechanism and excellent energy dissipation behavior in the field of damping, owning to their unique dynamic mechanical properties—“soft elasticity”. Under external forces, the mesogens can change their directions and absorb external energy, achieving effective damping behavior. Compared with traditional polymers, LCE has higher damping factor and broader effective damping temperature range, enabling them effective application in various environments. The “rate-dependent behavior” of LCEs also endows them with superior mechanical performance and energy absorption abilities under high strain rate conditions, and thus they can be used to construct new types of high-impact resistance equipment. The monodomain liquid crystal elastomer is uniformly orientated, which exhibits superior damping properties compared to polydomain liquid crystal elastomer. With the help of 3D printing technology, bulk monodomain liquid crystal elastomer can also be prepared. In the separated Hopkinson bar experiment and shaking table experiment tests, liquid crystal elastomers have shown superior energy absorption abilities compared to traditional polymer materials.Utilizing advanced processing techniques, LCEs can also be fabricated into various lightweight and high-performance structures. This paper provides an overview of the damping mechanism, damping characteristics, and dynamic mechanical properties of LCEs, and discusses their challenges and opportunities in the field of damping.
SAGARTZAZU X , HERVELLA-NIETO L , PAGALDAY J M . Review in sound absorbing materials [J]. Archives of Computational Methods in Engineering , 2008 , 15 ( 3 ): 311 - 342 . doi: 10.1007/s11831-008-9022-1 http://dx.doi.org/10.1007/s11831-008-9022-1
CORSARO R D , SPERLING L H . Sound and Vibration Damping with Polymers [M]. Washington, DC : American Chemical Society , 1990 . doi: 10.1021/bk-1990-0424 http://dx.doi.org/10.1021/bk-1990-0424
顾健 . 空心球/环氧多孔材料的材料阻尼及管结构阻尼研究 [D]. 哈尔滨 : 哈尔滨工业大学 , 2009 .
GU J . Study on damping properties of hollow spheres/epoxy porous composites and encapsulating pipes [D]. Harbin : Harbin Institute of Technology , 2009 . (in Chinese)
HOTTA A , TERENTJEV E M . Dynamic soft elasticity in monodomain nematic elastomers [J]. The European Physical Journal E , 2003 , 10 ( 4 ): 291 - 301 . doi: 10.1140/epje/i2002-10005-5 http://dx.doi.org/10.1140/epje/i2002-10005-5
CLARKE S M , TAJBAKHSH A R , TERENTJEV E M , et al . Soft elasticity and mechanical damping in liquid crystalline elastomers [J]. Journal of Applied Physics , 2001 , 89 ( 11 ): 6530 - 6535 . doi: 10.1063/1.1368177 http://dx.doi.org/10.1063/1.1368177
SAED M O , ELMADIH W , TERENTJEV A , et al . Impact damping and vibration attenuation in nematic liquid crystal elastomers [J]. Nature Communications , 2021 , 12 ( 1 ): 6676 . doi: 10.1038/s41467-021-27012-1 http://dx.doi.org/10.1038/s41467-021-27012-1
KNAUSS W G , EMRI I , LU H B . Mechanics of polymers: viscoelasticity [M]//SHARPE WILLIAM N. Springer Handbook of Experimental Solid Mechanics . Boston, MA : Springer , 2008 : 49 - 96 . doi: 10.1007/978-0-387-30877-7_3 http://dx.doi.org/10.1007/978-0-387-30877-7_3
GEETHAMMA V G , ASALETHA R , KALARIKKAL N , et al . Vibration and sound damping in polymers [J]. Resonance , 2014 , 19 ( 9 ): 821 - 833 . doi: 10.1007/s12045-014-0091-1 http://dx.doi.org/10.1007/s12045-014-0091-1
WANG Z Z , SCHMITT D R , WANG R H . Modeling of viscoelastic properties of nonpermeable porous rocks saturated with highly viscous fluid at seismic frequencies at the core scale [J]. Journal of Geophysical Research: Solid Earth , 2017 , 122 ( 8 ): 6067 - 6086 . doi: 10.1002/2017jb013979 http://dx.doi.org/10.1002/2017jb013979
CHUNG D D L . Review: materials for vibration damping [J]. Journal of Materials Science , 2001 , 36 ( 24 ): 5733 - 5737 . doi: 10.1023/a:1012999616049 http://dx.doi.org/10.1023/a:1012999616049
LI Y , LIAN Q S , LIN Z R , et al . Epoxy/polysiloxane intimate intermixing networks driven by intrinsic motive force to achieve ultralow-temperature damping properties [J]. Journal of Materials Chemistry A , 2017 , 5 ( 33 ): 17549 - 17562 . doi: 10.1039/c7ta04894g http://dx.doi.org/10.1039/c7ta04894g
SONG M , ZHAO X Y , LI Y , et al . Effect of acrylonitrile content on compatibility and damping properties of hindered phenol AO-60/nitrile-butadiene rubber composites: molecular dynamics simulation [J]. RSC Advances , 2014 , 4 ( 89 ): 48472 - 48479 . doi: 10.1039/c4ra10211h http://dx.doi.org/10.1039/c4ra10211h
MCNAIR O D , JANISSE A P , KRZEMINSKI D E , et al . Impact properties of thiol-ene networks [J]. ACS Applied Materials & Interfaces , 2013 , 5 ( 21 ): 11004 - 11013 . doi: 10.1021/am403238g http://dx.doi.org/10.1021/am403238g
SIRISINHA C , BAULEK-LIMCHAROEN S , THUNYARITTIKORN J . Relationships among blending conditions, size of dispersed phase, and oil resistance in natural rubber and nitrile rubber blends [J]. Journal of Applied Polymer Science , 2001 , 82 ( 5 ): 1232 - 1237 . doi: 10.1002/app.1957 http://dx.doi.org/10.1002/app.1957
WU JH , LI CH , WU YT , et al . Thermal resistance and dynamic damping properties of poly (styrene-butadiene-styrene)/thermoplastic polyurethane composites elastomer material [J]. Composites Science and Technology , 2010 , 70 ( 8 ): 1258 - 1264 . doi: 10.1016/j.compscitech.2010.03.014 http://dx.doi.org/10.1016/j.compscitech.2010.03.014
NORIMAN N Z , ISMAIL H , RASHID A A . Characterization of styrene butadiene rubber/recycled acrylonitrile-butadiene rubber (SBR/NBRr) blends: the effects of epoxidized natural rubber (ENR-50) as a compatibilizer [J]. Polymer Testing , 2010 , 29 ( 2 ): 200 - 208 . doi: 10.1016/j.polymertesting.2009.11.002 http://dx.doi.org/10.1016/j.polymertesting.2009.11.002
WANG T M , CHEN S B , WANG Q H , et al . Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead [J]. Materials & Design , 2010 , 31 ( 8 ): 3810 - 3815 . doi: 10.1016/j.matdes.2010.03.029 http://dx.doi.org/10.1016/j.matdes.2010.03.029
TRAKULSUJARITCHOK T , HOURSTON D J . Damping characteristics and mechanical properties of silica filled PUR/PEMA simultaneous interpenetrating polymer networks [J]. European Polymer Journal , 2006 , 42 ( 11 ): 2968 - 2976 . doi: 10.1016/j.eurpolymj.2006.07.028 http://dx.doi.org/10.1016/j.eurpolymj.2006.07.028
CHEN S B , WANG T M , WANG Q H , et al . Damping properties of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and nano-SiO 2 [J]. Journal of Macromolecular Science, Part B , 2011 , 50 ( 5 ): 931 - 941 . doi: 10.1080/00222348.2010.497068 http://dx.doi.org/10.1080/00222348.2010.497068
JOY A , VARUGHESE S , SHANMUGAM S , et al . Multiwalled carbon nanotube reinforced epoxy nanocomposites for vibration damping [J]. ACS Applied Nano Materials , 2019 , 2 ( 2 ): 736 - 743 . doi: 10.1021/acsanm.8b01865 http://dx.doi.org/10.1021/acsanm.8b01865
SIMENDIĆ J B , BJELOVIĆ Z , JOVANOVIĆ S S , et al . Thermal stability and damping properties of polyurethane hybrid material based on castor oil [J]. Contemporary Materials , 2014 , 5 ( 1 ): 64 - 68 . doi: 10.7251/comen1401064s http://dx.doi.org/10.7251/comen1401064s
GONG Z L , GONG J , YAN X L , et al . Investigation of the effects of temperature and strain on the damping properties of polycarbonate/multiwalled carbon nanotube composites [J]. The Journal of Physical Chemistry C , 2011 , 115 ( 38 ): 18468 - 18472 . doi: 10.1021/jp205354e http://dx.doi.org/10.1021/jp205354e
SUHR J , KORATKAR N , KEBLINSKI P , et al . Viscoelasticity in carbon nanotube composites [J]. Nature Materials , 2005 , 4 ( 2 ): 134 - 137 . doi: 10.1038/nmat1293 http://dx.doi.org/10.1038/nmat1293
UNWIN A P , HINE P J , WARD I M , et al . Escaping the Ashby limit for mechanical damping/stiffness trade-off using a constrained high internal friction interfacial layer [J]. Scientific Reports , 2018 , 8 ( 1 ): 2454 . doi: 10.1038/s41598-018-20670-0 http://dx.doi.org/10.1038/s41598-018-20670-0
WU C F . Effects of a hindered phenol compound on the dynamic mechanical properties of chlorinated polyethylene, acrylic rubber, and their blend [J]. Journal of Applied Polymer Science , 2001 , 80 ( 13 ): 2468 - 2473 . doi: 10.1002/app.1354 http://dx.doi.org/10.1002/app.1354
QIAO B , ZHAO X Y , YUE D M , et al . A combined experiment and molecular dynamics simulation study of hydrogen bonds and free volume in nitrile-butadiene rubber/hindered phenol damping mixtures [J]. Journal of Materials Chemistry , 2012 , 22 ( 24 ): 12339 - 12348 . doi: 10.1039/c2jm31716h http://dx.doi.org/10.1039/c2jm31716h
ZHAO XY , XIANG P , TIAN M , et al . Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance [J]. Polymer , 2007 , 48 ( 20 ): 6056 - 6063 . doi: 10.1016/j.polymer.2007.08.011 http://dx.doi.org/10.1016/j.polymer.2007.08.011
WALLIN T J , SIMONSEN LE , PAN W Y , et al . 3D printable tough silicone double networks [J]. Nature Communications , 2020 , 11 ( 1 ): 4000 . doi: 10.1038/s41467-020-17816-y http://dx.doi.org/10.1038/s41467-020-17816-y
WALKER T A , FRANKOWSKI D J , SPONTAK R J . Thermodynamics and kinetic processes of polymer blends and block copolymers in the presence of pressurized carbon dioxide [J]. Advanced Materials , 2008 , 20 ( 5 ): 879 - 898 . doi: 10.1002/adma.200700076 http://dx.doi.org/10.1002/adma.200700076
WU Y S , WANG Y L , GUAN X , et al . Molecular clogging organogels with excellent solvent maintenance, adjustable modulus, and advanced mechanics for impact protection [J]. Advanced Materials , 2023 , 35 ( 48 ): 2306882 . doi: 10.1002/adma.202306882 http://dx.doi.org/10.1002/adma.202306882
XIANG H , LI X X , WU B H , et al . Highly damping and self-healable ionic elastomer from dynamic phase separation of sticky fluorinated polymers [J]. Advanced Materials , 2023 , 35 ( 10 ): e2209581 . doi: 10.1002/adma.202209581 http://dx.doi.org/10.1002/adma.202209581
李强 , 黄光速 , 江璐霞 . PMPS/PMAc相容性与同步互贯聚合物网络的阻尼性能研究 [J]. 高分子学报 , 2003 ( 3 ): 409 - 413 .
LI Q , HUANG G S , JIANG L X . Compatibility and damping properties of PMPS/PMAc simultaneous interpenetrating polymer networks [J]. Acta Polymerica Sinica , 2003 ( 3 ): 409 - 413 . (in Chinese)
JASPERS M , VAESSEN S L , VAN SCHAYIK P , et al . Nonlinear mechanics of hybrid polymer networks that mimic the complex mechanical environment of cells [J]. Nature Communications , 2017 , 8 ( 1 ): 15478 . doi: 10.1038/ncomms15478 http://dx.doi.org/10.1038/ncomms15478
SPERLING L H . Interpenetrating polymer networks [M]//KROSCHWITZ J I. Encyclopedia of Polymer Science and Technology . Hoboken : John Wiley & Sons , 2004 . doi: 10.1002/0471440264.pst170 http://dx.doi.org/10.1002/0471440264.pst170
CHANG M C O , THOMAS D A , SPERLING L H . Group contribution analysis of the damping behavior of homopolymers, statistical copolymers, and interpenetrating polymer networks based on acrylic, vinyl, and styrenic mers [J]. Journal of Polymer Science Part B: Polymer Physics , 1988 , 26 ( 8 ): 1627 - 1640 . doi: 10.1002/polb.1988.090260806 http://dx.doi.org/10.1002/polb.1988.090260806
QIN CL , CAI WM , CAI J , et al . Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network [J]. Materials Chemistry and Physics , 2004 , 85 ( 2/3 ): 402 - 409 . doi: 10.1016/j.matchemphys.2004.01.019 http://dx.doi.org/10.1016/j.matchemphys.2004.01.019
HOURSTON D J , SONG M , SCHAFER F U , et al . Modulated-temperature differential scanning calorimetry: 15. Crosslinking in polyurethane-poly(ethyl methacrylate) interpenetrating polymer networks [J]. Polymer , 1999 , 40 ( 17 ): 4769 - 4775 . doi: 10.1016/s0032-3861(98)00706-x http://dx.doi.org/10.1016/s0032-3861(98)00706-x
LIU J , MIAO P C , ZHANG W W , et al . Synthesis and characterization of interpenetrating polymer networks (IPNs) based on UV curable resin and blocked isocyanate/polyols [J]. Polymer , 2022 , 256 : 125254 . doi: 10.1016/j.polymer.2022.125254 http://dx.doi.org/10.1016/j.polymer.2022.125254
SHI W , ZHOU T X , HE B B , et al . Dynamic-bond-mediated chain reptation enhances energy dissipation of elastomers [J]. Angewandte Chemie International Edition , 2024 , 63 ( 19 ): e202401845 . doi: 10.1002/anie.202401845 http://dx.doi.org/10.1002/anie.202401845
HUANG J , XU Y C , QI S H , et al . Ultrahigh energy-dissipation elastomers by precisely tailoring the relaxation of confined polymer fluids [J]. Nature Communications , 2021 , 12 ( 1 ): 3610 . doi: 10.1038/s41467-021-23984-2 http://dx.doi.org/10.1038/s41467-021-23984-2
APARICIO-COLLADO J L , NOVOA J J , MOLINA-MATEO J , et al . Novel semi-interpenetrated polymer networks of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (vinyl alcohol) with incorporated conductive polypyrrole nanoparticles [J]. Polymers , 2020 , 13 ( 1 ): 57 . doi: 10.3390/polym13010057 http://dx.doi.org/10.3390/polym13010057
LIU J F , FAN W F , LU G W , et al . Semi-interpenetrating polymer networks based on cyanate ester and highly soluble thermoplastic polyimide [J]. Polymers , 2019 , 11 ( 5 ): 862 . doi: 10.3390/polym11050862 http://dx.doi.org/10.3390/polym11050862
ZENG Y N , YANG W M , LIU S X , et al . Dynamic semi IPNs with duple dynamic linkers: self-healing, reprocessing, welding, and shape memory behaviors [J]. Polymers , 2021 , 13 ( 11 ): 1679 . doi: 10.3390/polym13111679 http://dx.doi.org/10.3390/polym13111679
KIM J , MOK M M , SANDOVAL R W , et al . Uniquely broad glass transition temperatures of gradient copolymers relative to random and block copolymers containing repulsive comonomers [J]. Macromolecules , 2006 , 39 ( 18 ): 6152 - 6160 . doi: 10.1021/ma061241f http://dx.doi.org/10.1021/ma061241f
WANG J J , GENG X Y , WANG W C , et al . Nitrile rubber/sliding graft copolymer damping material with significantly improved strength and damping performance [J]. Journal of Applied Polymer Science , 2019 , 136 ( 11 ): 47188 . doi: 10.1002/app.47188 http://dx.doi.org/10.1002/app.47188
QIU Y , WU L , LIU S J , et al . Impact-protective bicontinuous hydrogel/ultrahigh-molecular weight polyethylene fabric composite with multiscale energy dissipation structures for soft body armor [J]. ACS Applied Materials & Interfaces , 2023 , 15 ( 7 ): 10053 - 10063 . doi: 10.1021/acsami.2c22993 http://dx.doi.org/10.1021/acsami.2c22993
WANG F , ALTSCHUH P , RATKE L , et al . Progress report on phase separation in polymer solutions [J]. Advanced Materials , 2019 , 31 ( 26 ): 1806733 . doi: 10.1002/adma.201806733 http://dx.doi.org/10.1002/adma.201806733
QIU Y , WU L , LIU S J , et al . An impact resistant hydrogel enabled by bicontinuous phase structure and hierarchical energy dissipation [J]. Journal of Materials Chemistry B , 2023 , 11 ( 4 ): 905 - 913 . doi: 10.1039/d2tb01693a http://dx.doi.org/10.1039/d2tb01693a
WANG D , WANG Z F , REN S Y , et al . Molecular engineering of a colorless, extremely tough, superiorly self-recoverable, and healable poly(urethane-urea) elastomer for impact-resistant applications [J]. Materials Horizons , 2021 , 8 ( 8 ): 2238 - 2250 . doi: 10.1039/d1mh00548k http://dx.doi.org/10.1039/d1mh00548k
MAO Z P , ZHANG X Q , JIANG G D , et al . Fabricating sea-island structure and co-continuous structure in PMMA/ASA and PMMA/CPE blends: correlation between impact property and phase morphology [J]. Polymer Testing , 2019 , 73 : 21 - 30 . doi: 10.1016/j.polymertesting.2018.11.008 http://dx.doi.org/10.1016/j.polymertesting.2018.11.008
WANG Z Y , FAN J F , HE D Y , et al . Superior stretchable, low thermal resistance and efficient self-healing composite elastomers for thermal management [J]. Journal of Materials Chemistry A , 2022 , 10 ( 41 ): 21923 - 21932 . doi: 10.1039/d2ta05781f http://dx.doi.org/10.1039/d2ta05781f
LIU K , CHENG L , ZHANG N B , et al . Biomimetic impact protective supramolecular polymeric materials enabled by quadruple H-Bonding [J]. Journal of the American Chemical Society , 2021 , 143 ( 2 ): 1162 - 1170 .
ZENG X L , ZENG X L , FAN J F , et al . Ultrahigh energy-dissipation thermal interface materials through anneal-induced disentanglement [J]. ACS Materials Letters , 2022 , 4 ( 5 ): 874 - 881 . doi: 10.1021/acsmaterialslett.2c00132 http://dx.doi.org/10.1021/acsmaterialslett.2c00132
URAYAMA K , MIKI T , TAKIGAWA T , et al . Damping elastomer based on model irregular networks of end-linked poly(dimethylsiloxane) [J]. Chemistry of Materials , 2004 , 16 ( 1 ): 173 - 178 . doi: 10.1021/cm0343507 http://dx.doi.org/10.1021/cm0343507
DING SC , FAN JF , HE DY , et al . High thermal conductivity and remarkable damping composite gels as thermal interface materials for heat dissipation of chip [J]. Chip , 2022 , 1 ( 2 ): 100013 . doi: 10.1016/j.chip.2022.100013 http://dx.doi.org/10.1016/j.chip.2022.100013
RONG H X , XU M , JIANG X L , et al . Synthesis and molecular dynamics study of high-damping polyurethane elastomers based on the synergistic effect of dangling chains and dynamic bonds [J]. Polymer Chemistry , 2022 , 13 ( 29 ): 4260 - 4272 . doi: 10.1039/d2py00323f http://dx.doi.org/10.1039/d2py00323f
LIANG H , WU Y H , ZHANG Y B , et al . Elastomers grow into actuators [J]. Advanced Materials , 2023 , 35 ( 12 ): 2209853 . doi: 10.1002/adma.202209853 http://dx.doi.org/10.1002/adma.202209853
YAO Y J , HE E J , XU H T , et al . Enabling liquid crystal elastomers with tunable actuation temperature [J]. Nature Communications , 2023 , 14 ( 1 ): 3518 . doi: 10.1038/s41467-023-39238-2 http://dx.doi.org/10.1038/s41467-023-39238-2
PEI Z Q , YANG Y , CHEN Q M , et al . Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds [J]. Nature Materials , 2014 , 13 ( 1 ): 36 - 41 . doi: 10.1038/nmat3812 http://dx.doi.org/10.1038/nmat3812
BISOYI H K , LI Q . Liquid crystals: versatile self-organized smart soft materials [J]. Chemical Reviews , 2022 , 122 ( 5 ): 4887 - 4926 . doi: 10.1021/acs.chemrev.1c00761 http://dx.doi.org/10.1021/acs.chemrev.1c00761
GAO J J , TANG Y Q , MARTELLA D , et al . Stimuli-responsive photonic actuators for integrated biomimetic and intelligent systems [J]. Responsive Materials , 2023 , 1 ( 1 ): e20230008 . doi: 10.1002/rpm.20230008 http://dx.doi.org/10.1002/rpm.20230008
MA S S , XUE P , TANG Y Q , et al . Responsive soft actuators with MXene nanomaterials [J]. Responsive Materials , 2024 , 2 ( 1 ): e20230026 . doi: 10.1002/rpm2.29 http://dx.doi.org/10.1002/rpm2.29
MISTRY D , TRAUGUTT N A , SANBORN B , et al . Soft elasticity optimises dissipation in 3D-printed liquid crystal elastomers [J]. Nature Communications , 2021 , 12 ( 1 ): 6677 . doi: 10.1038/s41467-021-27013-0 http://dx.doi.org/10.1038/s41467-021-27013-0
WARNER M , TERENTJEV E M . Nematic elastomers—a new state of matter? [J]. Progress in Polymer Science , 1996 , 21 ( 5 ): 853 - 891 . doi: 10.1016/s0079-6700(96)00013-5 http://dx.doi.org/10.1016/s0079-6700(96)00013-5
QIAN X J , CHEN Q M , YANG Y , et al . Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots [J]. Advanced Materials , 2018 , 30 ( 29 ): 1801103 . doi: 10.1002/adma.201801103 http://dx.doi.org/10.1002/adma.201801103
ZHANG Y B , WANG Z H , YANG Y , et al . Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots [J]. Science Advances , 2020 , 6 ( 9 ): eaay8606 . doi: 10.1126/sciadv.aay8606 http://dx.doi.org/10.1126/sciadv.aay8606
CHEN Q M , LI W W , WEI Y , et al . Reprogrammable 3D liquid-crystalline actuators with precisely controllable stepwise actuation [J]. Advanced Intelligent Systems , 2021 , 3 ( 8 ): 2000249 . doi: 10.1002/aisy.202000249 http://dx.doi.org/10.1002/aisy.202000249
WU Y H , ZHANG S , YANG Y , et al . Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions [J]. Science Advances , 2022 , 8 ( 25 ): eabo6021 . doi: 10.1126/sciadv.abo6021 http://dx.doi.org/10.1126/sciadv.abo6021
WEN Z B , MCBRIDE M K , ZHANG X P , et al . Reconfigurable LC elastomers: using a thermally programmable monodomain to access two-way free-standing multiple shape memory polymers [J]. Macromolecules , 2018 , 51 ( 15 ): 5812 - 5819 .
LIANG H , ZHANG S , LIU Y W , et al . Merging the interfaces of different shape-shifting polymers using hybrid exchange reactions [J]. Advanced Materials , 2023 , 35 ( 1 ): 2202462 . doi: 10.1002/adma.202202462 http://dx.doi.org/10.1002/adma.202202462
YAKACKI C M , SAED M , NAIR D P , et al . Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction [J]. RSC Advances , 2015 , 5 ( 25 ): 18997 - 19001 . doi: 10.1039/c5ra01039j http://dx.doi.org/10.1039/c5ra01039j
MERKEL D R , TRAUGUTT N A , VISVANATHAN R , et al . Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers [J]. Soft Matter , 2018 , 14 ( 29 ): 6024 - 6036 . doi: 10.1039/c8sm01178h http://dx.doi.org/10.1039/c8sm01178h
MARTIN LINARES C P , TRAUGUTT N A , SAED M O , et al . The effect of alignment on the rate-dependent behavior of a main-chain liquid crystal elastomer [J]. Soft Matter , 2020 , 16 ( 38 ): 8782 - 8798 . doi: 10.1039/d0sm00125b http://dx.doi.org/10.1039/d0sm00125b
MERKEL D R , SHAHA R K , YAKACKI C M , et al . Mechanical energy dissipation in polydomain nematic liquid crystal elastomers in response to oscillating loading [J]. Polymer , 2019 , 166 : 148 - 154 . doi: 10.1016/j.polymer.2019.01.042 http://dx.doi.org/10.1016/j.polymer.2019.01.042
OHZONO T , SAED M O , TERENTJEV E M . Enhanced dynamic adhesion in nematic liquid crystal elastomers [J]. Advanced Materials , 2019 , 31 ( 30 ): 1902642 . doi: 10.1002/adma.201902642 http://dx.doi.org/10.1002/adma.201902642
SAED M O , VOLPE R H , TRAUGUTT N A , et al . High strain actuation liquid crystal elastomers via modulation of mesophase structure [J]. Soft Matter , 2017 , 13 ( 41 ): 7537 - 7547 . doi: 10.1039/c7sm01380a http://dx.doi.org/10.1039/c7sm01380a
OHZONO T , MINAMIKAWA H , KOYAMA E , et al . Impact of crystallites in nematic elastomers on dynamic mechanical properties and adhesion [J]. Macromolecules , 2021 , 54 ( 19 ): 8987 - 8995 . doi: 10.1021/acs.macromol.1c01160 http://dx.doi.org/10.1021/acs.macromol.1c01160
JAVED M , CORAZAO T , SAED M O , et al . Programmable shape change in semicrystalline liquid crystal elastomers [J]. ACS Applied Materials & Interfaces , 2022 , 14 ( 30 ): 35087 - 35096 . doi: 10.1021/acsami.2c07533 http://dx.doi.org/10.1021/acsami.2c07533
XIA Y L , MU T , LIU Y J , et al . Harnessing the power of carbon fiber reinforced liquid crystal elastomer composites for high-performance aerospace materials: a comprehensive investigation on reversible transformation and shape memory deformation [J]. Composites Part A: Applied Science and Manufacturing , 2024 , 177 : 107943 . doi: 10.1016/j.compositesa.2023.107943 http://dx.doi.org/10.1016/j.compositesa.2023.107943
LUGGER S J D , MULDER D J , SCHENNING A P H J . One-pot synthesis of melt-processable supramolecular soft actuators [J]. Angewandte Chemie International Edition , 2022 , 61 ( 6 ): e202115166 . doi: 10.1002/anie.202115166 http://dx.doi.org/10.1002/anie.202115166
SONG C J , ZHANG Y H , BAO J Y , et al . Light-responsive programmable shape‐memory soft actuator based on liquid crystalline polymer/polyurethane network [J]. Advanced Functional Materials , 2023 , 33 ( 17 ): 2213771 . doi: 10.1002/adfm.202213771 http://dx.doi.org/10.1002/adfm.202213771
GUO H Y , SAED M O , TERENTJEV E M . Thiol-acrylate side-chain liquid crystal elastomers [J]. Soft Matter , 2022 , 18 ( 25 ): 4803 - 4809 . doi: 10.1039/d2sm00547f http://dx.doi.org/10.1039/d2sm00547f
LIU Z , XIONG Y Q , HAO J H , et al . Liquid crystal-based organosilicone elastomers with supreme mechanical adaptability [J]. Polymers , 2022 , 14 ( 4 ): 789 . doi: 10.3390/polym14040789 http://dx.doi.org/10.3390/polym14040789
YANG J , GONG J H , TAO L M , et al . Reconfigurable and NIR-responsive shape memory polymer containing bipheunit units and graphene [J]. Polymer Journal , 2022 , 54 ( 5 ): 697 - 705 . doi: 10.1038/s41428-021-00609-5 http://dx.doi.org/10.1038/s41428-021-00609-5
LIN X Y , GABLIER A , TERENTJEV E M . Imine-based reactive mesogen and its corresponding exchangeable liquid crystal elastomer [J]. Macromolecules , 2022 , 55 ( 3 ): 821 - 830 . doi: 10.1021/acs.macromol.1c02432 http://dx.doi.org/10.1021/acs.macromol.1c02432
WANG Z J , GUO Y B , CAI S Q , et al . Three-dimensional printing of liquid crystal elastomers and their applications [J]. ACS Applied Polymer Materials , 2022 , 4 ( 5 ): 3153 - 3168 . doi: 10.1021/acsapm.1c01598 http://dx.doi.org/10.1021/acsapm.1c01598
LI S , BAI H D , LIU Z , et al . Digital light processing of liquid crystal elastomers for self-sensing artificial muscles [J]. Science Advances , 2021 , 7 ( 30 ): eabg3677 . doi: 10.1126/sciadv.abg3677 http://dx.doi.org/10.1126/sciadv.abg3677
LÓPEZ‐VALDEOLIVAS M , LIU D Q , BROER D J , et al . 4D printed actuators with soft-robotic functions [J]. Macromolecular Rapid Communications , 2018 , 39 ( 5 ): 1700710 . doi: 10.1002/marc.201700710 http://dx.doi.org/10.1002/marc.201700710
AMBULO C P , BURROUGHS J J , BOOTHBY J M , et al . Four-dimensional printing of liquid crystal elastomers [J]. ACS Applied Materials & Interfaces , 2017 , 9 ( 42 ): 37332 - 37339 . doi: 10.1021/acsami.7b11851 http://dx.doi.org/10.1021/acsami.7b11851
TABRIZI M , WARE T H , SHANKAR M R . Voxelated molecular patterning in three-dimensional freeforms [J]. ACS Applied Materials & Interfaces , 2019 , 11 ( 31 ): 28236 - 28245 . doi: 10.1021/acsami.9b04480 http://dx.doi.org/10.1021/acsami.9b04480
TRAUGUTT N A , MISTRY D , LUO C Q , et al . Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing [J]. Advanced Materials , 2020 , 32 ( 28 ): 2000797 . doi: 10.1002/adma.202000797 http://dx.doi.org/10.1002/adma.202000797
JEON S Y , SHEN B J , TRAUGUTT N A , et al . Synergistic energy absorption mechanisms of architected liquid crystal elastomers [J]. Advanced Materials , 2022 , 34 ( 14 ): 2200272 . doi: 10.1002/adma.202200272 http://dx.doi.org/10.1002/adma.202200272
LUO C Q , CHUNG C , TRAUGUTT N A , et al . 3D printing of liquid crystal elastomer foams for enhanced energy dissipation under mechanical insult [J]. ACS Applied Materials & Interfaces , 2021 , 13 ( 11 ): 12698 - 12708 . doi: 10.1021/acsami.0c17538 http://dx.doi.org/10.1021/acsami.0c17538
0
浏览量
231
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构