1.北京印刷学院 印刷与包装工程学院, 北京 102600
2.北京大学 材料科学与工程学院, 北京 100871
[ "张茂鑫(1999—),男,广东河源人,硕士研究生,2021年于北京印刷学院获得学士学位,主要从事发光盘状液晶材料的研究。E-mail:1078554393@qq.com" ]
[ "张春秀(1972—),女,辽宁锦州人,博士,教授,2009年于北京交通大学获得博士学位,主要从事以高效电荷传导能力的盘状液晶为主要研究方向的柔性有机电子学的研究。E-mail:zhangchunxiu@bigc.edu.cn" ]
[ "于海峰(1975—),男,河北秦皇岛人,博士,研究员,2003年于清华大学获得博士学位,主要从事液晶/高分子功能材料方面的研究。E-mail:yuhaifeng@ pku.edu.cn" ]
扫 描 看 全 文
张茂鑫, 乔世一, 张翱, 等. 具有聚集诱导发光功能的圆偏振发光液晶材料[J]. 液晶与显示, 2023,38(10):1305-1321.
ZHANG Mao-xin, QIAO Shi-yi, ZHANG Ao, et al. Circularly polarized luminescent liquid crystal materials with aggregation-induced emission functionality[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(10):1305-1321.
张茂鑫, 乔世一, 张翱, 等. 具有聚集诱导发光功能的圆偏振发光液晶材料[J]. 液晶与显示, 2023,38(10):1305-1321. DOI: 10.37188/CJLCD.2023-0224.
ZHANG Mao-xin, QIAO Shi-yi, ZHANG Ao, et al. Circularly polarized luminescent liquid crystal materials with aggregation-induced emission functionality[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(10):1305-1321. DOI: 10.37188/CJLCD.2023-0224.
圆偏振光是光矢量端点轨迹为圆的光,它在传播时光矢量的大小不变而振动方向随相位而改变。通常,非偏振光首先通过偏振片转化为线偏振光,再通过,λ,/4波片分解为左旋或右旋圆偏振光。这一物理过程所获得的圆偏振光能量损耗一般超过50%。而通过构筑聚集诱导发光手性液晶分子直接获得圆偏振光,可以获得高的荧光量子效率和大的不对称因子,有效降低了能量损耗。因此, 聚集诱导发光手性液晶受到了研究人员的广泛关注。本文基于聚集诱导发光基团修饰手性液晶分子的设计与合成,以及手性聚集诱导发光分子体系掺杂向列相液晶这两类方法,综述了本领域的研究进展,讨论了聚集诱导发光液晶分子结构设计和聚集态的形成对圆偏振发光和聚集诱导发光性能的影响,展望了这种新型光学材料所面临的机遇和挑战。
Circularly polarized light is a type of light in which the endpoint trajectory of the light vector forms a circle. During its propagation, the magnitude of the light vector remains constant while the vibration direction changes along with phase. Typically, unpolarized light is first converted to linearly polarized light through a polarizer and then transformed into left-handed or right-handed circularly polarized light using a quarter-wave plate. However, this physical process results in an energy loss higher than 50% for circularly polarized light. By introducing aggregation-induced emission (AIE) properties into chiral liquid crystal molecules, circularly polarized light can be directly obtained with a high fluorescence quantum efficiency and a large asymmetric factor, thereby achieving effective reduction of energy loss. Consequently, AIE chiral liquid crystals have gained increasing attention from researchers in relevant fields. This review summarizes the recent progress in this field, focusing on the design and synthesis of chiral liquid crystal molecules modified with AIE luminophores and the doping of chiral AIE molecule systems into nematic liquid crystal phases. The influence of the chemical structure design of AIE liquid crystal molecules and the formation of aggregates on circularly polarized luminescence and AIE performance are discussed. Finally, the existing challenges and opportunities for this new optical material are prospected.
聚集诱导圆偏振发光液晶材料手性液晶基团不对称因子荧光量子效率
aggregation-induced circularly polarized luminescent liquid crystalschiral liquid crystal groupsdissymmetry factorfluorescence quantum yield
KUNNEN B, MACDONALD C, DORONIN A, et al. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media [J]. J. Biophotonics., 2015, 8(4): 317-323. doi: 10.1002/jbio.201400104http://dx.doi.org/10.1002/jbio.201400104
DREMIN V, ANIN D, SIERYI O, et al. Imaging of early stage breast cancer with circularly polarized light [C]//Proceedings of SPIE 11363, . Online: SPIE, 2020: 1136304. doi: 10.1117/12.2554166http://dx.doi.org/10.1117/12.2554166
KAKKAR T, KEIJZER C, RODIER M, et al. Superchiral near fields detect virus structure [J]. Light Sci. Appl., 2020, 9(1): 195. doi: 10.1038/s41377-020-00433-1http://dx.doi.org/10.1038/s41377-020-00433-1
DENG Y J, WANG M Z, ZHUANG Y L, et al. Circularly polarized luminescence from organic micro-/nano-structures [J]. Light Sci. Appl., 2021, 10(1): 76. doi: 10.1038/s41377-021-00516-7http://dx.doi.org/10.1038/s41377-021-00516-7
MAK K M, LAI H W, LUK K M, et al. Circularly polarized patch antenna for future 5G mobile phones [J]. IEEE Access, 2014, 2: 1521-1529. doi: 10.1109/access.2014.2382111http://dx.doi.org/10.1109/access.2014.2382111
CHEN Y, YANG X D, GAO J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage [J]. Light Sci. Appl., 2019, 8(1): 45. doi: 10.1038/s41377-019-0156-8http://dx.doi.org/10.1038/s41377-019-0156-8
KAWASAKI T, SATO M, ISHIGURO S, et al. Enantioselective synthesis of near enantiopure compound by asymmetric autocatalysis triggered by asymmetric photolysis with circularly polarized light [J]. J. Am. Chem. Soc., 2005, 127(10): 3274-3275. doi: 10.1021/ja0422108http://dx.doi.org/10.1021/ja0422108
MACKENZIE L E, PAL R. Circularly polarized lanthanide luminescence for advanced security inks [J]. Nat. Rev. Chem., 2021, 5(2): 109-124. doi: 10.1038/s41570-020-00235-4http://dx.doi.org/10.1038/s41570-020-00235-4
BAEK K, LEE D M, LEE Y J, et al. Simultaneous emission of orthogonal handedness in circular polarization from a single luminophore [J]. Light Sci. Appl., 2019, 8(1): 120. doi: 10.1038/s41377-019-0232-0http://dx.doi.org/10.1038/s41377-019-0232-0
LUNKLEY J L, SHIROTANI D, YAMANARI K, et al. Extraordinary circularly polarized luminescence activity exhibited by cesium tetrakis(3-heptafluoro-butylryl-(+)-camphorato) Eu(III) complexes in EtOH and CHCl3 solutions [J]. J. Am. Chem. Soc., 2008, 130(42): 13814-13815. doi: 10.1021/ja805681whttp://dx.doi.org/10.1021/ja805681w
YAO K, SHEN Y H, LI Y, et al. Ultrastrong red circularly polarized luminescence promoted from chiral transfer and intermolecular förster resonance energy transfer in ternary chiral emissive nematic liquid crystals [J]. J. Phys. Chem. Lett., 2021, 12(1): 598-603. doi: 10.1021/acs.jpclett.0c03438http://dx.doi.org/10.1021/acs.jpclett.0c03438
CHEN H, GU Z G, ZHANG J. Chiral-induced ultrathin covalent organic frameworks nanosheets with tunable circularly polarized luminescence [J]. J. Am. Chem. Soc., 2022, 144(16): 7245-7252. doi: 10.1021/jacs.2c00285http://dx.doi.org/10.1021/jacs.2c00285
SANG Y T, HAN J L, ZHAO T H, et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application [J]. Adv. Mater., 2020, 32(41): 1900110. doi: 10.1002/adma.201900110http://dx.doi.org/10.1002/adma.201900110
MCNAUGHT A D, WILKINSON A. Compendium of Chemical Terminology [M]. Oxford: Blackwell Science, 1997.
GONG J, ZHANG X J. Coordination-based circularly polarized luminescence emitters: design strategy and application in sensing [J]. Coord. Chem. Rev., 2022, 453: 214329. doi: 10.1016/j.ccr.2021.214329http://dx.doi.org/10.1016/j.ccr.2021.214329
KITAGAWA Y, TSURUI M, HASEGAWA Y. Steric and electronic control of chiral Eu(Ⅲ) complexes for effective circularly polarized luminescence [J]. ACS Omega, 2020, 5(8): 3786-3791. doi: 10.1021/acsomega.9b03613http://dx.doi.org/10.1021/acsomega.9b03613
WONG H Y, LO W S, YIM K H, et al. Chirality and chiroptics of lanthanide molecular and supramolecular assemblies [J]. Chem, 2019, 5(12): 3058-3095. doi: 10.1016/j.chempr.2019.08.006http://dx.doi.org/10.1016/j.chempr.2019.08.006
SUGIMOTO M, LIU X L, TSUNEGA S, et al. Circularly polarized luminescence from inorganic materials: encapsulating guest lanthanide oxides in chiral silica hosts [J]. Chem. Eur. J., 2018, 24(25): 6519-6524. doi: 10.1002/chem.201705862http://dx.doi.org/10.1002/chem.201705862
LI S, DONG X Y, QI K S, et al. Full-color tunable circularly polarized luminescence induced by the crystal defect from the co-assembly of chiral silver(I) clusters and dyes [J]. J. Am. Chem. Soc., 2021, 143(49): 20574-20578. doi: 10.1021/jacs.1c09245http://dx.doi.org/10.1021/jacs.1c09245
LI S, YAN Z P, LI X L, et al. Stepwise achievement of circularly polarized luminescence on atomically precise silver clusters [J]. Adv. Sci., 2020, 7(15): 2000738. doi: 10.1002/advs.202000738http://dx.doi.org/10.1002/advs.202000738
ZHANG M M, LI K, ZANG S Q. Progress in atomically precise coinage metal clusters with aggregation-induced emission and circularly polarized luminescence [J]. Adv. Opt. Mater., 2020, 8(14): 1902152. doi: 10.1002/adom.201902152http://dx.doi.org/10.1002/adom.201902152
MA J, WANG Y X, LI X J, et al. Aggregation-induced CPL response from chiral binaphthyl-based AIE-active polymers via supramolecular self-assembled helical nanowires [J]. Polymer, 2018, 143: 184-189. doi: 10.1016/j.polymer.2018.04.006http://dx.doi.org/10.1016/j.polymer.2018.04.006
XU M C, LI G Y, LI W, et al. Exploring the circular polarization capacity from chiral cellulose nanocrystal films for a photo-controlled chiral helix of supramolecular polymers [J]. Angew. Chem. Int. Ed., 2022, 61(18): e202117042. doi: 10.1002/anie.202117042http://dx.doi.org/10.1002/anie.202117042
STASZAK K, WIESZCZYCKA K, MARTURANO V, et al. Lanthanides complexes-chiral sensing of biomolecules [J]. Coord. Chem. Rev., 2019, 397: 76-90. doi: 10.1016/j.ccr.2019.06.017http://dx.doi.org/10.1016/j.ccr.2019.06.017
DU X S, JIN R C. Atomically precise metal nanoclusters for catalysis [J]. ACS Nano, 2019, 13(7): 7383-7387. doi: 10.1021/acsnano.9b04533http://dx.doi.org/10.1021/acsnano.9b04533
CRASSOUS J. Chiral transfer in coordination complexes: towards molecular materials [J]. Chem. Soc. Rev., 2009, 38(3): 830-845. doi: 10.1039/b806203jhttp://dx.doi.org/10.1039/b806203j
ZHANG C, LI S, DONG X Y, et al. Circularly polarized luminescence of agglomerate emitters [J]. Aggregate, 2021, 2(5): e48. doi: 10.1002/agt2.48http://dx.doi.org/10.1002/agt2.48
MULLER G. Luminescent chiral lanthanide(Ⅲ) complexes as potential molecular probes [J]. Dalton Trans., 2009(44): 9692-9707. doi: 10.1039/b909430jhttp://dx.doi.org/10.1039/b909430j
ZINNA F, DI BARI L. Lanthanide circularly polarized luminescence: bases and applications [J]. Chirality, 2015, 27(1): 1-13. doi: 10.1002/chir.22382http://dx.doi.org/10.1002/chir.22382
ZHU Y F, GUO J, QIU X Y, et al. Optical activity of chiral metal nanoclusters [J]. Acc. Mater. Res., 2021, 2(1): 21-35. doi: 10.1021/accountsmr.0c00057http://dx.doi.org/10.1021/accountsmr.0c00057
RIVAL J V, MYMOONA P, LAKSHMI K M, et al. Self-assembly of precision noble metal nanoclusters: hierarchical structural complexity, colloidal superstructures, and applications [J]. Small, 2021, 17(27): 2005718. doi: 10.1002/smll.202005718http://dx.doi.org/10.1002/smll.202005718
JIN R C, ZENG C J, ZHOU M, et al. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities [J]. Chem. Rev., 2016, 116(18): 10346-10413. doi: 10.1021/acs.chemrev.5b00703http://dx.doi.org/10.1021/acs.chemrev.5b00703
HAN Z, DONG X Y, LUO P, et al. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency [J]. Sci. Adv., 2020, 6(6): eaay0107. doi: 10.1126/sciadv.aay0107http://dx.doi.org/10.1126/sciadv.aay0107
NGUYEN S T, GIN D L, HUPP J T, et al. Supramolecular chemistry: functional structures on the mesoscale [J]. Proc. Natl. Acad. Sci. USA, 2001, 98(21): 11849-11850. doi: 10.1073/pnas.201373898http://dx.doi.org/10.1073/pnas.201373898
WANG M H, ZHAO Y R, ZHANG L M, et al. Unexpected role of achiral glycine in determining the suprastructural handedness of peptide nanofibrils [J]. ACS Nano, 2021, 15(6): 10328-10341. doi: 10.1021/acsnano.1c02547http://dx.doi.org/10.1021/acsnano.1c02547
EELKEMA R, FERINGA B L. Amplification of chirality in liquid crystals [J]. Org. Biomol. Chem., 2006, 4(20): 3729-3745. doi: 10.1039/b608749chttp://dx.doi.org/10.1039/b608749c
REINITZER F. Beiträge zur kenntniss des cholesterins [J]. Monatshefte für Chemie, 1888, 9(1): 421-441. doi: 10.1007/bf01516710http://dx.doi.org/10.1007/bf01516710
史书宽,李斌轩,杨槐,等. 仿生光热管理智能高分子材料[J]. 液晶与显示,2022,37(2):250-263. doi: 10.37188/CJLCD.2021-0314http://dx.doi.org/10.37188/CJLCD.2021-0314
SHI S K, LI B X, YANG H, et al. Bioinspired intelligent polymer materials for optical and thermal management [J]. Chin. J. Liq. Cryst. Disp., 2022, 37(2): 250-263. (in Chinese). doi: 10.37188/CJLCD.2021-0314http://dx.doi.org/10.37188/CJLCD.2021-0314
杨梦园,杨潇,封伟,等. 近红外光响应液晶纳米智能材料[J]. 液晶与显示,2020,35(7):631-644. doi: 10.37188/YJYXS20203507.0631http://dx.doi.org/10.37188/YJYXS20203507.0631
YANG M Y, YANG X, FENG W, et al. Near-infrared light-responsive intelligent liquid crystal nanocomposites [J]. Chin. J. Liq. Cryst. Disp., 2020, 35(7): 631-644. (in Chinese). doi: 10.37188/YJYXS20203507.0631http://dx.doi.org/10.37188/YJYXS20203507.0631
王添洁,于海峰. 光响应液晶嵌段共聚物研究进展[J]. 液晶与显示,2015,30(4):543-552. doi: 10.3788/YJYXS20153004.0543http://dx.doi.org/10.3788/YJYXS20153004.0543
WANG T J, YU H F. Progress in photoresponsive liquid-crystalline block copolymer [J]. Chin. J. Liq. Cryst. Disp., 2015, 30(4): 543-552. (in Chinese). doi: 10.3788/YJYXS20153004.0543http://dx.doi.org/10.3788/YJYXS20153004.0543
王建闯,王文忠,于海峰. 光驱动液晶聚合物振动器研究进展[J]. 液晶与显示,2022,37(2):186-198. doi: 10.37188/CJLCD.2021-0253http://dx.doi.org/10.37188/CJLCD.2021-0253
WANG J C, WANG W Z, YU H F. Research progress in light-driven oscillators of liquid-crystalline polymers [J]. Chin. J. Liq. Cryst. Disp., 2022, 37(2): 186-198. (in Chinese). doi: 10.37188/CJLCD.2021-0253http://dx.doi.org/10.37188/CJLCD.2021-0253
纪宇帆,蔡锋,于海峰. 液晶聚合物的表面形貌光调控研究进展[J]. 应用化学,2021,38(10):1226-1237. doi: 10.19894/j.issn.1000-0518.210381http://dx.doi.org/10.19894/j.issn.1000-0518.210381
JI Y F, CAI F, YU H F. Research progress on photoswitchable surface topography of liquid crystalline polymer [J]. Chin. J. Appl. Chem., 2021, 38(10): 1226-1237. (in Chinese). doi: 10.19894/j.issn.1000-0518.210381http://dx.doi.org/10.19894/j.issn.1000-0518.210381
DE GENNES P G. Soft matter [J]. Science, 1992, 256(5056): 495-497. doi: 10.1126/science.256.5056.495http://dx.doi.org/10.1126/science.256.5056.495
DE GENNES P G. Press release[EB/OL]. (1991-10-16). https://www.nobelprize.org/prizes/physics/1991/press-release/https://www.nobelprize.org/prizes/physics/1991/press-release/. doi: 10.1016/0045-6535(91)90121-shttp://dx.doi.org/10.1016/0045-6535(91)90121-s
马佳哲,杨言昭,王玲,等. 主链型手性液晶弹性体[J]. 光子学报,2022,51(7):0751417.
MA J Z, YANG Y Z, WANG L, et al. Main-chain chiral liquid crystal elastomers [J]. Acta Photonica Sin., 2022, 51(7): 0751417. (in Chinese)
陈原浩,吕鹏飞,杨梦园,等. 光驱动软体致动器的制备及其信息安全应用[J]. 液晶与显示,2021,36(2):229-236. doi: 10.37188/CJLCD.2020-0233http://dx.doi.org/10.37188/CJLCD.2020-0233
CHEN Y H, LYU P F, YANG M Y, et al. Fabrication of light-driven soft actuator and its information security application [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(2): 229-236. (in Chinese). doi: 10.37188/CJLCD.2020-0233http://dx.doi.org/10.37188/CJLCD.2020-0233
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chem. Commun., 2001(18): 1740-1741. doi: 10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
HONG Y N, LAM J W Y, TANG B Z. Aggregation-induced emission [J]. Chem. Soc. Rev., 2011, 40(11): 5361-5388. doi: 10.1039/c1cs15113dhttp://dx.doi.org/10.1039/c1cs15113d
VOSKUHL J, GIESE M. Mesogens with aggregation-induced emission properties: Materials with a bright future [J]. Aggregate, 2022, 3(1): e124. doi: 10.1002/agt2.124http://dx.doi.org/10.1002/agt2.124
ROOSE J, TANG B Z, WONG K S. Circularly-Polarized Luminescence (CPL) from chiral AIE molecules and macrostructures [J]. Small, 2016, 12(47): 6495-6512. doi: 10.1002/smll.201601455http://dx.doi.org/10.1002/smll.201601455
FAN T W, CHEN X H, LIU D H, et al. A chiral column core surrounded by peripheral emitting moieties: a novel strategy for constructing columnar liquid crystals with circularly polarized luminescence [J]. J. Mater. Chem. C, 2022, 10(14): 5598-5607. doi: 10.1039/d2tc00461ehttp://dx.doi.org/10.1039/d2tc00461e
MEI J, HONG Y N, LAM J W Y, et al. Aggregation-induced emission: the whole is more brilliant than the parts [J]. Adv. Mater., 2014, 26(31): 5429-5479. doi: 10.1002/adma.201401356http://dx.doi.org/10.1002/adma.201401356
YE Q, ZHU D D, ZHANG H X, et al. Thermally tunable circular dichroism and circularly polarized luminescence of tetraphenylethene with two cholesterol pendants [J]. J. Mater. Chem. C, 2015, 3(27): 6997-7003. doi: 10.1039/c5tc00987ahttp://dx.doi.org/10.1039/c5tc00987a
JIANG S J, QIU J B, LIN L B, et al. Circularly polarized luminescence based on columnar self-assembly of tetraphenylethylene with multiple cholesterol units [J]. Dyes Pigm., 2019, 163: 363-370. doi: 10.1016/j.dyepig.2018.12.021http://dx.doi.org/10.1016/j.dyepig.2018.12.021
ZHAO J, CHI Z H, YANG Z Y, et al. Recent progress in the mechanofluorochromism of distyrylanthracene derivatives with aggregation-induced emission [J]. Mater. Chem. Front., 2018, 2(9): 1595-1608. doi: 10.1039/c8qm00130hhttp://dx.doi.org/10.1039/c8qm00130h
KIM S, ZHENG Q, HE G S, et al. Aggregation-enhanced fluorescence and two-photon absorption in nanoaggregates of a 9, 10-Bis [4′-(4″-aminostyryl)styryl]anthracene derivative [J]. Adv. Funct. Mater., 2006, 16(18): 2317-2323. doi: 10.1002/adfm.200500928http://dx.doi.org/10.1002/adfm.200500928
BHONGALE C J, CHANG C W, LEE C S, et al. Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission [J]. J. Phys. Chem. B, 2005, 109(28): 13472-13482. doi: 10.1021/jp0502297http://dx.doi.org/10.1021/jp0502297
YOON S J, CHUNG J W, GIERSCHNER J, et al. Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets [J]. J. Am. Chem. Soc., 2010, 132(39): 13675-13683. doi: 10.1021/ja1044665http://dx.doi.org/10.1021/ja1044665
LI Y P, LI F, ZHANG H Y, et al. Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission [J]. Chem. Commun., 2007(3): 231-233. doi: 10.1039/b612732khttp://dx.doi.org/10.1039/b612732k
AN B K, KWON S K, JUNG S D, et al. Enhanced emission and its switching in fluorescent organic nanoparticles [J]. J. Am. Chem. Soc., 2002, 124(48): 14410-14415. doi: 10.1021/ja0269082http://dx.doi.org/10.1021/ja0269082
MARTINEZ-RUIZ P, BEHNISCH B, SCHWEIKART K H, et al. Tuning of photo- and electroluminescence of new soluble, PPV-analogous short-chain compounds with naphthalene moieties [J]. Chem. Eur. J., 2000, 6(8): 1294-1301. doi: 10.1002/(sici)1521-3765(20000417)6:8<1294::aid-chem1294>3.0.co;2-whttp://dx.doi.org/10.1002/(sici)1521-3765(20000417)6:8<1294::aid-chem1294>3.0.co;2-w
WU Y, YOU L H, YU Z Q, et al. Rational design of circularly polarized luminescent aggregation-induced emission luminogens (AIEgens): promoting the dissymmetry factor and emission efficiency synchronously [J]. ACS Mater. Lett., 2020, 2(5): 505-510. doi: 10.1021/acsmaterialslett.0c00063http://dx.doi.org/10.1021/acsmaterialslett.0c00063
CHEN Y D, LU P, GUI Q, et al. Preparation of chiral luminescent liquid crystals and manipulation effect of phase structures on the circularly polarized luminescence property [J]. J. Mater. Chem. C, 2021, 9(4): 1279-1286. doi: 10.1039/d0tc04832ahttp://dx.doi.org/10.1039/d0tc04832a
SONG F Y, CHENG Y H, LIU Q M, et al. Tunable circularly polarized luminescence from molecular assemblies of chiral AIEgens [J]. Mater. Chem. Front., 2019, 3(9): 1768-1778. doi: 10.1016/j.dyepig.2021.109332http://dx.doi.org/10.1016/j.dyepig.2021.109332
WANG R Q, CHEN S B, CHEN Q R, et al. Porphyrin with circularly polarized luminescence in aggregated states [J]. Dyes Pigm., 2021, 190: 109332. doi: 10.1016/j.dyepig.2021.109332http://dx.doi.org/10.1016/j.dyepig.2021.109332
GUO H Y, YU Q, XIONG Y Z, et al. Ionic liquid crystals with circularly polarized luminescence [J]. J. Mol. Liq., 2021, 335: 116179. doi: 10.1016/j.molliq.2021.116179http://dx.doi.org/10.1016/j.molliq.2021.116179
YANG X F, JIN X, ZHAO T H, et al. Circularly polarized luminescence in chiral nematic liquid crystals: generation and amplification [J]. Mater. Chem. Front., 2021, 5(13): 4821-4832. doi: 10.1039/d1qm00335fhttp://dx.doi.org/10.1039/d1qm00335f
ILJIN A, WEI D, BORTOLOZZO U, et al. Dynamic grating recording by a light-induced modification of the order parameter in dye-doped chiral nematic liquid crystals [J]. Ukr. J. Phys., 2019, 64(4): 293. doi: 10.15407/ujpe64.4.293http://dx.doi.org/10.15407/ujpe64.4.293
LI X J, LI Q, WANG Y X, et al. Strong aggregation-induced CPL response promoted by chiral emissive nematic liquid crystals (N*-LCs) [J]. Chem. Eur. J., 2018, 24(48): 12607-12612. doi: 10.1002/chem.201801186http://dx.doi.org/10.1002/chem.201801186
CHEN Y D, LU P, LI Z Y, et al. Dual stimuli-responsive high-efficiency circularly polarized luminescence from light-emitting chiral nematic liquid crystals [J]. ACS Appl. Mater. Interfaces, 2020, 12(50): 56604-56614. doi: 10.1021/acsami.0c17241http://dx.doi.org/10.1021/acsami.0c17241
GAO X H, QIN X J, YANG X F, et al. (R)-Binaphthyl derivatives as chiral dopants: substituent position controlled circularly polarized luminescence in liquid crystals [J]. Chem. Commun., 2019, 55(42): 5914-5917. doi: 10.1039/c9cc02253hhttp://dx.doi.org/10.1039/c9cc02253h
LU P, CHEN Y D, CHEN Z, et al. Electric field, temperature and light-triggered triple dynamic circularly polarized luminescence switching in fluorescent cholesteric liquid crystals with a large dissymmetry factor [J]. J. Mater. Chem. C, 2021, 9(20): 6589-6596. doi: 10.1039/d1tc00561hhttp://dx.doi.org/10.1039/d1tc00561h
LI X J, HU W R, WANG Y X, et al. Strong CPL of achiral AIE-active dyes induced by supramolecular self-assembly in chiral nematic liquid crystals (AIE-N*-LCs) [J]. Chem. Commun., 2019, 55(35): 5179-5182. doi: 10.1039/c9cc01678chttp://dx.doi.org/10.1039/c9cc01678c
ZHAO D Y, HE H X, GU X G, et al. Circularly polarized luminescence and a reflective photoluminescent chiral nematic liquid crystal display based on an aggregation-induced emission luminogen [J]. Adv. Opt. Mater., 2016, 4(4): 534-539. doi: 10.1002/adom.201500646http://dx.doi.org/10.1002/adom.201500646
LU X H, ZHOU Z Q, NI B N, et al. Tuning the circularly polarized luminescence of polymer-stabilized cholesteric liquid crystal films using chiral dopants [J]. J. Mater. Chem. C, 2022, 10(21): 8246-8253. doi: 10.1039/d2tc00326khttp://dx.doi.org/10.1039/d2tc00326k
0
浏览量
217
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构