1.南京邮电大学 电子与光学工程学院, 江苏 南京 210023
2.南京邮电大学 集成电路科学与工程学院, 江苏 南京 210023
3.南京邮电大学 射频集成与微组装技术国家地方联合工程实验室, 江苏 南京 210023
[ "严静(1987—),女,江苏苏州人,博士,讲师,2016年于东南大学获得博士学位,主要从事液晶显示及液晶电光器件方面的研究。E-mail:jing.yan@ njupt.edu.cn" ]
[ "李若舟(1988—),男,湖北孝感人,博士,讲师,2016年于东南大学获得博士学位,主要从事柔性电子、微纳光子器件,表面等离激元和新型射频微波器件方面的研究。E-mail:lirz@njupt.edu.cn" ]
扫 描 看 全 文
严静, 范相文, 屈科, 等. 多色柔性自支撑胆甾相液晶薄膜反射器件[J]. 液晶与显示, 2023,38(10):1330-1337.
YAN Jing, FAN Xiang-wen, QU Ke, et al. Flexible free-standing cholesteric liquid crystal films for multi-color reflectors[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(10):1330-1337.
严静, 范相文, 屈科, 等. 多色柔性自支撑胆甾相液晶薄膜反射器件[J]. 液晶与显示, 2023,38(10):1330-1337. DOI: 10.37188/CJLCD.2023-0218.
YAN Jing, FAN Xiang-wen, QU Ke, et al. Flexible free-standing cholesteric liquid crystal films for multi-color reflectors[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(10):1330-1337. DOI: 10.37188/CJLCD.2023-0218.
一维手性软光子晶体胆甾相液晶(CLC)在防伪标签、纳米激光器和传感等领域具有广泛的应用。本文采用多步图案化紫外固化方法并结合清洗-重填工艺,实现了多色的柔性自支撑CLC薄膜反射器件。采用标签打印机打印PET图案作为掩膜版,对可聚合的CLC材料进行紫外固化,得到图案化的柔性自支撑CLC薄膜反射器件。在此基础上,将非固化区域的液晶材料洗去并重新填充不同手性剂含量的CLC,再次图案化紫外曝光,即可实现多色的柔性自支撑CLC薄膜反射器件。研究了不同入射角、弯曲曲率半径和温度对反射器件光学性能的影响。实验结果表明,采用上述方法制备的多色可自支撑反射器件具有良好的柔性,不同曲率半径下的布拉格反射中心波长基本不变。随着温度升高,布拉格反射中心波长红移,且具有良好的线性度。多色的可自支撑柔性薄膜反射器件可拓展CLC在显示、传感、激光防护和微纳光学等领域的进一步应用。
Cholesteric liquid crystals (CLCs), one-dimensional chiral soft photonic crystals, have a wide application in fields such as security tags, nanolasers, and sensing. In this paper, a multi-step UV patterning curing method combined with a washout-refill process was used to realize multi-color free-standing flexible CLC film reflectors. A label printer is used to print PET patterned mask, and a polymerizable CLC material is UV cured to obtain the free-standing flexible patterned CLC film reflector. Based on this, the uncured material was washed-out, refilled with CLC of different chiral dopant content, and the patterned UV light was re-exposed to realize a multi-color flexible free-standing CLC reflector. The effects of different incidence angles, bending radius of curvature and temperature on the optical properties of the reflector are investigated. The experimental results show that the multi-color free-standing reflectors prepared by the above method have good flexibility, the Bragg reflection center wavelength is basically constant at different radii of curvature, and it is red-shifted with the increasing temperature, which has good linearity. This proposed multi-color free-standing flexible film reflector protocol can further expand CLC’s applications in the fields of display, sensing, laser protection and micro-nano optics.
胆甾相液晶布拉格反射多色自支撑柔性薄膜光学器件
cholesteric liquid crystalbragg reflectionfree standing flexible filmoptical devices
ZHANG X, XU Y Y, VALENZUELA C, et al. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence [J]. Light: Science & Applications, 2022, 11(1): 223. doi: 10.1038/s41377-022-00913-6http://dx.doi.org/10.1038/s41377-022-00913-6
LV P F, LU X M, WANG L, et al. Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage [J]. Advanced Functional Materials, 2021, 31(45): 2104991. doi: 10.1002/adfm.202104991http://dx.doi.org/10.1002/adfm.202104991
MA J Z, YANG Y Z, VALENZUELA C, et al. Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds [J]. Angewandte Chemie International Edition, 2022, 61(9): e202116219. doi: 10.1002/anie.202116219http://dx.doi.org/10.1002/anie.202116219
邹呈,高延子,于美娜,等.液晶/高分子复合材料及其在反式电控调光膜中的应用研究进展[J].应用化学,2021,38(10):1213-1225. doi: 10.19894/j.issn.1000-0518.210373http://dx.doi.org/10.19894/j.issn.1000-0518.210373
ZOU C, GAO Y Z, YU M N, et al. Recent advances in liquid crystal/polymer composites and their applications in reverse-mode electrically switchable light-transmittance controllable films [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1213-1225. (in Chinese). doi: 10.19894/j.issn.1000-0518.210373http://dx.doi.org/10.19894/j.issn.1000-0518.210373
贺雅梅,靳晓宇,黎梓铭,等.基于液晶-聚合物复合材料的电控调光器件研究进展[J].液晶与显示,2022,37(8):1052-1069. doi: 10.37188/CJLCD.2022-0010http://dx.doi.org/10.37188/CJLCD.2022-0010
HE Y M, NULL N, JIN X Y, et al. Research progress of electric controlled switchable glass based on liquid crystal-polymer composite [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(8): 1052-1069. (in Chinese). doi: 10.37188/CJLCD.2022-0010http://dx.doi.org/10.37188/CJLCD.2022-0010
杨晨静,陈东.胆甾相液晶微液滴及其应用[J].液晶与显示,2022,37(8):1070-1078. doi: 10.37188/CJLCD.2022-0002http://dx.doi.org/10.37188/CJLCD.2022-0002
YANG C J, CHEN D. Researches and applications of cholesteric liquid crystal droplets [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(8): 1070-1078. (in Chinese). doi: 10.37188/CJLCD.2022-0002http://dx.doi.org/10.37188/CJLCD.2022-0002
YANG D K, WU S T. Fundamentals of Liquid Crystal Devices [M]. 2nd ed. Hoboken: John Wiley & Sons, 2014. doi: 10.1002/9781118751992http://dx.doi.org/10.1002/9781118751992
YANG D K. Flexible bistable cholesteric reflective displays [J]. Journal of Display Technology, 2006, 2(1): 32-37. doi: 10.1109/jdt.2005.861595http://dx.doi.org/10.1109/jdt.2005.861595
LI J T, BISOYI H K, TIAN J J, et al. Optically rewritable transparent liquid crystal displays enabled by light-driven chiral fluorescent molecular switches [J]. Advanced Materials, 2019, 31(10): 1807751. doi: 10.1002/adma.201807751http://dx.doi.org/10.1002/adma.201807751
WANG H H, LIU B Z, WANG L, et al. Graphene glass inducing multidomain orientations in cholesteric liquid crystal devices toward wide viewing angles [J]. ACS Nano, 2018, 12(7): 6443-6451. doi: 10.1021/acsnano.8b01773http://dx.doi.org/10.1021/acsnano.8b01773
LEE S S, KIM B, KIM S K, et al. Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules [J]. Advanced Materials, 2015, 27(4): 627-633. doi: 10.1002/adma.201403271http://dx.doi.org/10.1002/adma.201403271
LU H B, XIE X Y, XING J, et al. Wavelength-tuning and band-broadening of a cholesteric liquid crystal induced by a cyclic chiral azobenzene compound [J]. Optical Materials Express, 2016, 6(10): 3145-3158. doi: 10.1364/ome.6.003145http://dx.doi.org/10.1364/ome.6.003145
XIANYU H Q, LIN T H, WU S T. Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture [J]. Applied Physics Letters, 2006, 89(9): 091124. doi: 10.1063/1.2345597http://dx.doi.org/10.1063/1.2345597
LI Y, LIU Y J, WANG F, et al. High-performance dichroic dye-doped flexible cholesteric polymer film optical filter for laser protection application [J]. Optics Express, 2018, 26(18): 23000-23007. doi: 10.1364/oe.26.023000http://dx.doi.org/10.1364/oe.26.023000
LI Y, LIU Y J, DAI H T, et al. Flexible cholesteric films with super-reflectivity and high stability based on a multi-layer helical structure [J]. Journal of Materials Chemistry C, 2017, 5(41): 10828-10833. doi: 10.1039/c7tc03915hhttp://dx.doi.org/10.1039/c7tc03915h
VAN HEESWIJK E P A, MEERMAN T, DE HEER J, et al. Paintable encapsulated body-temperature-responsive photonic reflectors with arbitrary shapes [J]. ACS Applied Polymer Materials, 2019, 1(12): 3407-3412. doi: 10.1021/acsapm.9b00841http://dx.doi.org/10.1021/acsapm.9b00841
KHANDELWAL H, VAN HEESWIJK E P A, SCHENNING A P H J, et al. Paintable temperature-responsive cholesteric liquid crystal reflectors encapsulated on a single flexible polymer substrate [J]. Journal of Materials Chemistry C, 2019, 7(24): 7395-7398. doi: 10.1039/C9TC02011Jhttp://dx.doi.org/10.1039/C9TC02011J
RANJKESH A, YOON T H. Fabrication of a single-substrate flexible thermoresponsive cholesteric liquid-crystal film with wavelength tunability [J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26314-26322. doi: 10.1021/acsami.9b05112http://dx.doi.org/10.1021/acsami.9b05112
KIM D Y, NAH C, KANG S W, et al. Free-standing and circular-polarizing chirophotonic crystal reflectors: photopolymerization of helical nanostructures [J]. ACS Nano, 2016, 10(10): 9570-9576. doi: 10.1021/acsnano.6b04949http://dx.doi.org/10.1021/acsnano.6b04949
KIM D Y, LEE K M, WHITE T J, et al. Cholesteric liquid crystal paints: in situ photopolymerization of helicoidally stacked multilayer nanostructures for flexible broadband mirrors [J]. NPG Asia Materials, 2018, 10(11): 1061-1068. doi: 10.1038/s41427-018-0096-4http://dx.doi.org/10.1038/s41427-018-0096-4
LIM S I, JANG E, YU D M, et al. When chirophotonic film meets wrinkles: viewing angle independent corrugated photonic crystal paper [J]. Advanced Materials, 2023, 35(1): 2206764. doi: 10.1002/adma.202206764http://dx.doi.org/10.1002/adma.202206764
YAN J, FAN X W, LIU Y F, et al. Thermal imprint of wide-angle viewing bi-stable cholesteric liquid crystal displays [J]. Applied Optics, 2022, 61(6): 1577-1582. doi: 10.1364/ao.448311http://dx.doi.org/10.1364/ao.448311
LIN Y T, LIN T H. Cholesteric liquid crystal display with wide viewing angle based on multi-domain phase-separated composite films [J]. Journal of Display Technology, 2011, 7(7): 373-376. doi: 10.1109/jdt.2011.2120594http://dx.doi.org/10.1109/jdt.2011.2120594
ZHANG P, KRAGT A J J, SCHENNING A P H J, et al. An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns [J]. Journal of Materials Chemistry C, 2018, 6(27): 7184-7187. doi: 10.1039/c8tc02252fhttp://dx.doi.org/10.1039/c8tc02252f
CHEN F J, GUO J B, JIN O Y, et al. A temperature and PH double sensitive cholesteric polymer film from a photopolymerizable chiral hydrogen-bonded assembly [J]. Chinese Journal of Polymer Science, 2013, 31(4): 630-640. doi: 10.1007/s10118-013-1244-5http://dx.doi.org/10.1007/s10118-013-1244-5
ZHANG B B, LIN X Y, YOU Y X, et al. Flexible thermal responsive infrared reflector based on cholesteric liquid crystals and polymer stabilized cholesteric liquid crystals [J]. Optics Express, 2019, 27(9): 13516-13525. doi: 10.1364/oe.27.013516http://dx.doi.org/10.1364/oe.27.013516
BRANNUM M T, STEELE A M, VENETOS M C, et al. Light control with liquid crystalline elastomers [J]. Advanced Optical Materials, 2019, 7(6): 1801683. doi: 10.1002/adom.201801683http://dx.doi.org/10.1002/adom.201801683
ZHANG P, ZHOU G F, DE HAAN L T, et al. 4D chiral photonic actuators with switchable hyper-reflectivity [J]. Advanced Functional Materials, 2021, 31(9): 2007887. doi: 10.1002/adfm.202007887http://dx.doi.org/10.1002/adfm.202007887
0
浏览量
125
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构