1.西京学院 电子信息学院, 材料与能源科学技术研究院, 陕西 西安 710123
2.西北工业大学 光电与智能研究院, 陕西 西安 710072
3.京东方科技集团股份有限公司, 北京 100176
[ "苗宗成(1979—),男,山东胶南人,博士,教授,2010年于陕西科技大学获得博士学位,主要从事光电显示、光电探测等方面的研究。E-mail:miaozongcheng@nwpu.edu.cn" ]
扫 描 看 全 文
苗宗成, 张瑞寅, 贺泽民, 等. TFT基板低功耗显示驱动方法研究[J]. 液晶与显示, 2023,38(10):1372-1388.
MIAO Zong-cheng, ZHANG Rui-yin, HE Ze-min, et al. Review on driving method for low power consumption of TFT-based display screens[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(10):1372-1388.
苗宗成, 张瑞寅, 贺泽民, 等. TFT基板低功耗显示驱动方法研究[J]. 液晶与显示, 2023,38(10):1372-1388. DOI: 10.37188/CJLCD.2023-0204.
MIAO Zong-cheng, ZHANG Rui-yin, HE Ze-min, et al. Review on driving method for low power consumption of TFT-based display screens[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(10):1372-1388. DOI: 10.37188/CJLCD.2023-0204.
TFT的低功耗特性能够减少电子设备的能量消耗,从而达到节省能源、延长电池寿命、降低使用设备温度、提高显示质量的目的。因此,低功耗TFT在电子设备的设计和制造中具有十分重要的作用。TFT基板的结构有很多种类,通常可分为一般型、高温多晶硅型、低温多晶硅型、金属氧化物半导体型和柔性材料基板型。本文对现有的TFT基板显示器件的低功耗研究进行总结分析,主要包括两大方面:对TFT基板本身驱动进行优化;对TFT基板外设驱动进行优化。本文对两大方面的低功耗研究进行了综述,并对近年来国内外TFT低功耗方法研究进行详细介绍。根据所介绍的方法的特点与其尚未攻克的困境,对TFT基板显示设备低功耗驱动的未来发展进行了展望。
The low power consumption TFT can reduce the energy consumption of electronic devices, save energy, extend battery life, reduce device temperature, and improve display quality, which plays an important role in the design and manufacturing of electronic devices. The structure of TFT substrates can be divided into following types: high-temperature polycrystalline silicon, low-temperature polycrystalline silicon, metal oxide semiconductor, and flexible material substrate. This article summarizes and analyzes the research on low power consumption of existing TFT substrate display devices, including two main aspects: optimizing the driving of TFT substrate itself and optimizing the driving of TFT substrate peripherals. The research of low power consumption TFT in recent years at home and abroad is introduced in detail. Based on the characteristics and challenges of the methods introduced, the future development of low power consumption driving for TFT substrate display devices is discussed.
TFT显示低功耗驱动
TFTdisplaylow power consumptiondrive
GU C, JIA A B, ZHANG Y M, et al. Emerging electrochromic materials and devices for future displays [J]. Chemical Reviews, 2022, 122(18): 14679-14721. doi: 10.1021/acs.chemrev.1c01055http://dx.doi.org/10.1021/acs.chemrev.1c01055
HENG W Z, SOLOMON S, GAO W. Flexible electronics and devices as human-machine interfaces for medical robotics [J]. Advanced Materials, 2022, 34(16): 2107902. doi: 10.1002/adma.202107902http://dx.doi.org/10.1002/adma.202107902
CHEN F, KUO J. In-vehicle display technology [M]//LI Y, SHI H L. Advanced Driver Assistance Systems and Autonomous Vehicles: From Fundamentals to Applications. Singapore: Springer, 2022: 339-419. doi: 10.1007/978-981-19-5053-7_11http://dx.doi.org/10.1007/978-981-19-5053-7_11
LEE T Y, CHEN L Y, LO Y Y, et al. Technology and applications of micro-LEDs: their characteristics, fabrication, advancement, and challenges [J]. ACS Photonics, 2022, 9(9): 2905-2930. doi: 10.1021/acsphotonics.2c00285http://dx.doi.org/10.1021/acsphotonics.2c00285
ADUPA C, MANNEPALLI C, IJJADA S R. A 9-bit pseudo-noise-based calibrated successive approximation ADC with differential/integral nonlinearity enhancement [J]. Soft Computing, 2022, 26(9): 4289-4294. doi: 10.1007/s00500-021-06419-4http://dx.doi.org/10.1007/s00500-021-06419-4
LIU N Q. Design techniques to improve analog and mixed-signal circuits performance [D]. Ames: Iowa State University, 2020.
KIM J, CHEN Y F, LEE S, et al. A novel gate driver working under depletion mode oxide TFTs using low-temperature poly-Si oxide TFTs [J]. IEEE Electron Device Letters, 2021, 42(11): 1619-1622. doi: 10.1109/led.2021.3110272http://dx.doi.org/10.1109/led.2021.3110272
SIRENDEN B H, MURSANTO P, WIJONARKO S. Dynamic texture analysis of water flow video using temporal binary patern [J]. Preprints, 2022: 2022050233.
CHO J K, JEONG M. A low-power digital pixel driving scheme for single-pulse-PWM-based display using AND-embedded pixel circuits [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(11): 3382-3392. doi: 10.1109/tcsvt.2018.2875944http://dx.doi.org/10.1109/tcsvt.2018.2875944
CHEN D B, CHEN Y C, ZENG G, et al. Integration technology of micro-LED for next-generation display [J]. Research, 2023, 6: 0047. doi: 10.34133/research.0047http://dx.doi.org/10.34133/research.0047
WANG Z Y, ZHOU D Y, GONG S H. Uncalibrated visual positioning using adaptive Kalman filter with dual rate structure for wafer chip in LED packaging [J]. Measurement, 2022, 191: 110829. doi: 10.1016/j.measurement.2022.110829http://dx.doi.org/10.1016/j.measurement.2022.110829
KIM D S, KWON O K. A new dot inversion data addressing technique using double rate driving method for high image quality and low-power TFT-LCDs [J]. Journal of Display Technology, 2016, 12(10): 1019-1026. doi: 10.1109/jdt.2016.2580699http://dx.doi.org/10.1109/jdt.2016.2580699
YANG Z Y, QIAN Y Z, ZOU J Y, et al. Reducing the power consumption of VR displays with a field sequential color LCD [J]. Applied Sciences, 2023, 13(4): 2635. doi: 10.3390/app13042635http://dx.doi.org/10.3390/app13042635
LI Y N, DAILEY M, LOHR P J, et al. Performance and stability improvements in metal halide perovskite with intralayer incorporation of organic additives [J]. Journal of Materials Chemistry A, 2021, 9(30): 16281-16338. doi: 10.1039/d1ta05252ghttp://dx.doi.org/10.1039/d1ta05252g
KIM D S, KWON O K. A small-area and low-power scan driver using a coplanar a-IGZO thin-film transistor with a dual-gate for liquid crystal displays [J]. IEEE Electron Device Letters, 2017, 38(2): 195-198. doi: 10.1109/led.2016.2638832http://dx.doi.org/10.1109/led.2016.2638832
GONG Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: a review [J]. Nanomaterials, 2021, 11(4): 842. doi: 10.3390/nano11040842http://dx.doi.org/10.3390/nano11040842
OH J, KIM J H, JUNG K M, et al. a-Si∶H TFT-based gate driver circuit using Q node as both pull-up and hold-down controller [J]. Semiconductor Science and Technology, 2019, 34(6): 065014. doi: 10.1088/1361-6641/ab1fa6http://dx.doi.org/10.1088/1361-6641/ab1fa6
ÜNSALAN C, GÜRHAN H D, YÜCEL M E. Embedded System Design with ARM Cortex-M Microcontrollers: Applications with C, C++ and MicroPython [M]. Cham: Springer, 2022. doi: 10.1007/978-3-030-88439-0http://dx.doi.org/10.1007/978-3-030-88439-0
LUEDER E, KNOLL P, LEE S H. Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects [M]. 3rd ed. New York: John Wiley & Sons, 2022. doi: 10.1002/9781119667940http://dx.doi.org/10.1002/9781119667940
FRIGERIO P, MOLINARI L, BARBIERI A, et al. Nested closed-loop control of quasi-static MEMS scanners with large dynamic range [J]. IEEE Transactions on Industrial Electronics, 2023, 70(4): 4217-4225. doi: 10.1109/tie.2022.3174235http://dx.doi.org/10.1109/tie.2022.3174235
YOU B, NAM H, LEE H, et al. Image adaptive refresh rate technology for ultra low power consumption [J]. SID Symposium Digest of Technical Papers, 2020, 51(1): 676-679. doi: 10.1002/sdtp.13958http://dx.doi.org/10.1002/sdtp.13958
JO J H, JEONG W B, JOUNG Y S, et al. Selective scan driver for low-power consumption using oxide thin film transistors [J]. IEEE Electron Device Letters, 2022, 43(8): 1263-1266. doi: 10.1109/led.2022.3184337http://dx.doi.org/10.1109/led.2022.3184337
GUAN X, HUANG J, TANG T. Robot vision application on embedded vision implementation with digital signal processor [J]. International Journal of Advanced Robotic Systems, 2020, DOI: 10.1177/1729881419900437http://dx.doi.org/10.1177/1729881419900437.
ZHANG T, ZHAO X, PAN X H, et al. Optimal local dimming based on an improved shuffled frog leaping algorithm [J]. IEEE Access, 2018, 6: 40472-40484. doi: 10.1109/access.2018.2858827http://dx.doi.org/10.1109/access.2018.2858827
ZHANG L R, YU H M, XIAO W P, et al. Strategies for applications of oxide-based thin film transistors [J]. Electronics, 2022, 11(6): 960. doi: 10.3390/electronics11060960http://dx.doi.org/10.3390/electronics11060960
HUANG Y G, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives [J]. Light: Science & Applications, 2020, 9: 105. doi: 10.1038/s41377-020-0341-9http://dx.doi.org/10.1038/s41377-020-0341-9
HERTEL D. Optical measurement standards for reflective e‐paper to predict colors displayed in ambient illumination environments [J]. Color Research & Application, 2018, 43(6): 907-921. doi: 10.1002/col.22279http://dx.doi.org/10.1002/col.22279
LIN C X, YI X W, JI Z X, et al. Optimum display luminance under a wide range of ambient light for cockpit displays [J]. Optics Express, 2022, 30(21): 38439-38457. doi: 10.1364/oe.466039http://dx.doi.org/10.1364/oe.466039
LAM H M, GUO F, QIU H Z, et al. Pseudo multi-port SRAM circuit for image processing in display drivers [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(5): 2056-2062. doi: 10.1109/tcsvt.2020.2979046http://dx.doi.org/10.1109/tcsvt.2020.2979046
BRANDELERO J, EWANCHUK J, MOLLOV S. Selective gate driving in intelligent power modules [J]. IEEE Transactions on Power Electronics, 2021, 36(1): 898-910. doi: 10.1109/tpel.2020.3002188http://dx.doi.org/10.1109/tpel.2020.3002188
STECCA M, TAN C Y, XU J Z, et al. Hybrid Si/SiC switch modulation with minimum SiC MOSFET conduction in grid connected voltage source converters [J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(4): 4275-4289. doi: 10.1109/jestpe.2022.3146581http://dx.doi.org/10.1109/jestpe.2022.3146581
XIONG J H, HSIANG E L, HE Z Q, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives [J]. Light: Science & Applications, 2021, 10(1): 216. doi: 10.1038/s41377-021-00658-8http://dx.doi.org/10.1038/s41377-021-00658-8
TOPOL A W, LA TULIPE D C, SHI L, et al. Three-dimensional integrated circuits [J]. IBM Journal of Research and Development, 2006, 50(4-5): 491-506. doi: 10.1147/rd.504.0491http://dx.doi.org/10.1147/rd.504.0491
RAJ A A B. FPGA-Based Embedded System Developer’s Guide [M]. Boca Raton: CRC Press, 2017. doi: 10.1201/9781315156200http://dx.doi.org/10.1201/9781315156200
TONG S C, SUN J, YANG J L. Printed thin-film transistors: research from China [J]. ACS Applied Materials & Interfaces, 2018, 10(31): 25902-25924. doi: 10.1021/acsami.7b16413http://dx.doi.org/10.1021/acsami.7b16413
TAI Y H, LIN C H, HO T H, et al. Fully digital driving circuit for TFT LCD using the concept of ramp-stop [J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 2074-2080. doi: 10.1109/tie.2018.2838057http://dx.doi.org/10.1109/tie.2018.2838057
GENCO E, GARRIPOLI C, VAN DER STEEN J L P J, et al. An EMG interface comprising a flexible a-IGZO active electrode matrix and a 65-nm CMOS IC [J]. IEEE Journal of Solid-State Circuits, 2023. doi: 10.1109/jssc.2023.3274709http://dx.doi.org/10.1109/jssc.2023.3274709
YAN Z S, LIU Q, ZHANG T, et al. CrowdDBS: A crowdsourced brightness scaling optimization for display energy reduction in mobile video [J]. IEEE Transactions on Mobile Computing, 2018, 17(11): 2536-2549. doi: 10.1109/tmc.2018.2812852http://dx.doi.org/10.1109/tmc.2018.2812852
ZAFARZADEH M, WIKTORSSON M, BAALSRUD HAUGE J. A systematic review on technologies for data-driven production logistics: Their role from a holistic and value creation perspective [J]. Logistics, 2021, 5(2): 24. doi: 10.3390/logistics5020024http://dx.doi.org/10.3390/logistics5020024
MAJUMDER S, DEEN M J. Smartphone sensors for health monitoring and diagnosis [J]. Sensors, 2019, 19(9): 2164. doi: 10.3390/s19092164http://dx.doi.org/10.3390/s19092164
JANKOWSKI M. Influence of modifications related to safe operating area demands on operation of a specialized medium/high-voltage unity-gain buffer [J]. Energies, 2021, 15(1): 23. doi: 10.3390/en15010023http://dx.doi.org/10.3390/en15010023
LEE H C, LU Y C, LIN Y C, et al. A high voltage driving chiplet in standard 0.18 μm CMOS for micro-pixelated LED displays integrated with LTPS TFTs [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 7204-7211. doi: 10.1109/tcsvt.2022.3168051http://dx.doi.org/10.1109/tcsvt.2022.3168051
YOO Y, CHOI B D. Readout circuits for capacitive sensors [J]. Micromachines, 2021, 12(8): 960. doi: 10.3390/mi12080960http://dx.doi.org/10.3390/mi12080960
LUO Y F, ABIDIAN M R, AHN J H, et al. Technology roadmap for flexible sensors [J]. ACS Nano, 2023, 17(6): 5211-5295.
LIU X Q, YTTERDAL T, SHUR M. Multi-segment TFT compact model for THz applications [J]. Nanomaterials, 2022, 12(5): 765. doi: 10.3390/nano12050765http://dx.doi.org/10.3390/nano12050765
DENG J, LI X Q, LI M, et al. Fabrication and electrical properties of printed three-dimensional integrated carbon nanotube PMOS inverters on flexible substrates [J]. Nanoscale, 2022, 14(12): 4679-4689. doi: 10.1039/d1nr08056chttp://dx.doi.org/10.1039/d1nr08056c
HE B, HE G, JIANG S S, et al. Electrospun stacked dual-channel transistors with high electron mobility using a planar heterojunction architecture [J]. Advanced Electronic Materials, 2023, 9(2): 2201007. doi: 10.1002/aelm.202201007http://dx.doi.org/10.1002/aelm.202201007
WONG H. Abridging CMOS Technology [J]. Nanomaterials, 2022, 12(23): 4245. doi: 10.3390/nano12234245http://dx.doi.org/10.3390/nano12234245
TABATA T, ROZÉ F, THURIES L, et al. Microsecond non-melt UV laser annealing for future 3D-stacked CMOS [J]. Applied Physics Express, 2022, 15(6): 061002. doi: 10.35848/1882-0786/ac6e2ahttp://dx.doi.org/10.35848/1882-0786/ac6e2a
JEONG J, KIM S K, KIM J, et al. Heterogeneous and monolithic 3D integration of Ⅲ-Ⅴ-based radio frequency devices on Si CMOS circuits [J]. ACS nano, 2022, 16(6): 9031-9040. doi: 10.1021/acsnano.2c00334http://dx.doi.org/10.1021/acsnano.2c00334
WOO G, YOO H, KIM T. Hybrid thin-film materials combinations for complementary integration circuit implementation [J]. Membranes, 2021, 11(12): 931. doi: 10.3390/membranes11120931http://dx.doi.org/10.3390/membranes11120931
HAO Y, XIANG S Y, HAN G Q, et al. Recent progress of integrated circuits and optoelectronic chips [J]. Science China Information Sciences, 2021, 64(10): 201401. doi: 10.1007/s11432-021-3235-7http://dx.doi.org/10.1007/s11432-021-3235-7
KAUR P, BOES A, REN G H, et al. Hybrid and heterogeneous photonic integration [J]. APL Photonics, 2021, 6(6): 061102. doi: 10.1063/5.0052700http://dx.doi.org/10.1063/5.0052700
LOPES P A, SANTOS B C, DE ALMEIDA A T, et al. Reversible polymer-gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing [J]. Nature Communications, 2021, 12(1): 4666. doi: 10.1038/s41467-021-25008-5http://dx.doi.org/10.1038/s41467-021-25008-5
0
浏览量
143
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构