1.北京航空航天大学 化学学院, 北京 100191
[ "童颖萍(2000—),女,江西景德镇人,硕士研究生,2022年于南昌航空大学获得学士学位,主要从事液晶器件的研究。E-mail:769662498@qq.com" ]
[ "赵东宇(1976—),女,内蒙古根河人,博士,副教授,2009年于北京科技大学获得博士学位,主要从事液晶取向、发光液晶材料与器件、液晶复合材料等领域的研究。E-mail:zhaodongyu@buaa.edu.cn" ]
扫 描 看 全 文
童颖萍, 唐瑞琪, 段然, 等. 纳米掺杂对液晶电光性能影响[J]. 液晶与显示, 2023,38(9):1149-1163.
TONG Ying-ping, TANG Rui-qi, DUAN Ran, et al. Influence of nano-doping on electro-optical performance of liquid crystals[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(9):1149-1163.
童颖萍, 唐瑞琪, 段然, 等. 纳米掺杂对液晶电光性能影响[J]. 液晶与显示, 2023,38(9):1149-1163. DOI: 10.37188/CJLCD.2023-0178.
TONG Ying-ping, TANG Rui-qi, DUAN Ran, et al. Influence of nano-doping on electro-optical performance of liquid crystals[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(9):1149-1163. DOI: 10.37188/CJLCD.2023-0178.
液晶显示领域中的一个重要研究方向是液晶电光性能的改善。近年来,液晶-纳米科学见证了纳米掺杂增强液晶电光性质的范式转变。一方面,纳米颗粒具备特殊的理化性质能有效改善分散基质的性质;此外,纳米掺杂的液晶复合体系制备工艺简单、电光特性卓越,在显示领域占据重要地位。利用液晶与纳米颗粒间的不同相互作用,研究人员设计了一系列具有高稳定性、低成本、可调谐和可持续的电光器件。然而,纳米颗粒的掺杂有可能造成结构缺陷,不利于液晶的稳定。因此,纳米颗粒的选择是影响液晶电光性能的关键。本文概述了液晶-纳米复合体系的电光特性,着重讨论了纳米颗粒与液晶分子间可能存在的相互作用。同时,综述纳米颗粒掺杂液晶的研究现状,根据纳米颗粒类型总结了纳米掺杂对液晶电光性能的影响,并在此基础上,对未来液晶显示技术与纳米技术的结合进行了展望。
An important research direction in the field of liquid crystal displays is the improvement of electro-optical properties of liquid crystals. In recent years, liquid crystal-nanoscience has witnessed a paradigm shift in the electro-optical properties of nano-doped enhanced liquid crystals. On the one hand, nanoparticles possess special physicochemical properties that can effectively improve the properties of the dispersed substrates. In addition, the nano-doped liquid crystal composite system occupies an important position in the display field because of its simple preparation process and excellent electro-optical properties. Using the different interactions between liquid crystals and nanoparticles, researchers have designed a series of electro-optical devices with high stability, low cost, tunable and sustainable. However, the doping of nanoparticles has the potential to cause structural defects that are detrimental to the stability of liquid crystals. Therefore, the selection of nanoparticles is crucial to the electro-optical performance of liquid crystals. This paper provides an overview of the electro-optical properties of liquid crystal-nanocomposite systems, focusing on the possible interactions between nanoparticles and liquid crystal molecules. Meanwhile, the current research status of nanoparticle-doped liquid crystals is reviewed, and the effect of nano-doping on the electro-optical properties of liquid crystals is summarized according to the nanoparticle types, and based on this, the future combination of liquid crystal display technology and nanotechnology is prospected.
液晶纳米颗粒电光性能相互作用
liquid crystalsnanoparticleselectro-optical performanceinteractions
KOBAYASHI S, MIYAMA T, AKIYAMA H, et al. Development of liquid crystal displays and related improvements to their performances [J]. Proceedings of the Japan Academy, Series B, 2022, 98(9): 493-516. doi: 10.2183/pjab.98.025http://dx.doi.org/10.2183/pjab.98.025
AL-ITHAWI S, HADI A. An overview of liquid crystal techniques and technology with applications to different research fields [J]. Defect and Diffusion Forum, 2020, 398: 117-124. doi: 10.4028/www.scientific.net/ddf.398.117http://dx.doi.org/10.4028/www.scientific.net/ddf.398.117
王新久.液晶光学和液晶显示[M].北京:科学出版社,2006.
WANG X J. Liquid Crystal Optics and Liquid Crystal Display [M]. Beijing: Science Press, 2006. (in Chinese)
WANG C H, ZHOU J W, LUO J, et al. Lyotropic liquid crystals inducing liquid-fluid lamellar conducting highways as superior electrolytes toward electrochemical energy devices [J]. Industrial & Engineering Chemistry Research, 2022, 61(49): 17930-17936. doi: 10.1021/acs.iecr.2c03362http://dx.doi.org/10.1021/acs.iecr.2c03362
HONAKER L W, CHEN C, DAUTZENBERG F M H, et al. Designing biological microsensors with chiral nematic liquid crystal droplets [J]. ACS Applied Materials & Interfaces, 2022, 14(33): 37316-37329. doi: 10.1021/acsami.2c06923http://dx.doi.org/10.1021/acsami.2c06923
YANG X, CHEN Y H, ZHANG X, et al. Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods [J]. Nano Today, 2022, 43: 101419. doi: 10.1016/j.nantod.2022.101419http://dx.doi.org/10.1016/j.nantod.2022.101419
VRHEL M, SABER E, TRUSSELL H J. Color image generation and display technologies [J]. IEEE Signal Processing Magazine, 2005, 22(1): 23-33. doi: 10.1109/msp.2005.1407712http://dx.doi.org/10.1109/msp.2005.1407712
CUNNINGHAM P D, SOUZA J B, FEDIN I, et al. Assessment of anisotropic semiconductor nanorod and nanoplatelet heterostructures with polarized emission for liquid crystal display technology [J]. ACS Nano, 2016, 10(6): 5769-5781. doi: 10.1021/acsnano.5b07949http://dx.doi.org/10.1021/acsnano.5b07949
陈佳浩,刘娇,孙路瑶,等.聚合物稳定双频蓝相液晶的亚微秒电光响应[J].液晶与显示,2023,38(1):18-23. doi: 10.37188/cjlcd.2022-0052http://dx.doi.org/10.37188/cjlcd.2022-0052
CHEN J H, LIU J, SUN L Y, et al. Sub-microsecond electro-optic response in polymer-stabilized dual-frequency blue phase liquid crystals [J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(1): 18-23. (in Chinese). doi: 10.37188/cjlcd.2022-0052http://dx.doi.org/10.37188/cjlcd.2022-0052
FEYNMAN R P. There’s plenty of room at the bottom [J]. Resonance, 2011, 16(9): 890-905. doi: 10.1007/s12045-011-0109-xhttp://dx.doi.org/10.1007/s12045-011-0109-x
SELMANI A, KOVAČEVIĆ D, BOHINC K. Nanoparticles: from synthesis to applications and beyond [J]. Advances in Colloid and Interface Science, 2022, 303: 102640. doi: 10.1016/j.cis.2022.102640http://dx.doi.org/10.1016/j.cis.2022.102640
林志东.纳米材料基础与应用[M].北京:北京大学出版社,2010.
LIN Z D. Fundamentals and Applications of Nanomaterials [M]. Beijing: Peking University Press, 2010. (in Chinese)
孙路瑶,王鑫垚,陈佳浩,等.基于序参数与取向涨落的液晶电光开关[J].光学学报,2022,42(21):2123001.
SUN L Y, WANG X Y, CHEN J H, et al. Liquid crystal electro-optic switching based on order parameter and orientation fluctuations [J]. Acta Optica Sinica, 2022, 42(21): 2123001. (in Chinese)
邓媛,范遥见,陶磊,等.含有偶氮苯液晶纳米粒子的合成及其超分子结构和光控取向行为[J].应用化学,2021,38(10):1353-1361.
DENG Y, FAN Y J, TAO L, et al. Liquid crystal nanoparticles containing azobenzene: synthesis, supramolecular structure and their applications in light-controlled orientation [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1353-1361. (in Chinese)
KOBAYASHI S, AKIMOTO M, TAKATOH K, et al. Electro-optical properties of LCD doped with nanoparticles and with optical compensators: ways for fast response [J]. Molecular Crystals and Liquid Crystals, 2014, 594(1): 21-30. doi: 10.1080/15421406.2014.917462http://dx.doi.org/10.1080/15421406.2014.917462
KIM E, LIU Y, HONG S J, et al. Effect of SiO2 nanoparticle doping on electro-optical properties of polymer dispersed liquid crystal lens for smart electronic glasses [J]. Nano Convergence, 2015, 2(1): 5. doi: 10.1186/s40580-014-0039-xhttp://dx.doi.org/10.1186/s40580-014-0039-x
高鸿锦.液晶化学[M].北京:清华大学出版社,2011.
GAO H J. Liquid Crystal Chemistry [M]. Beijing: Tsinghua University Press, 2011. (in Chinese)
ZHANG Y S, LIU C Y, EMELYANENKO A V, et al. Synthesis of predesigned ferroelectric liquid crystals and their applications in field-sequential color displays [J]. Advanced Functional Materials, 2018, 28(14): 1706994. doi: 10.1002/adfm.201706994http://dx.doi.org/10.1002/adfm.201706994
MA H P, ZHOU L, HAN C, et al. The fabrication of novel optical diffusers based on UV-cured polymer dispersed liquid crystals [J]. Liquid Crystals, 2019, 46(1): 138-144. doi: 10.1080/02678292.2018.1477210http://dx.doi.org/10.1080/02678292.2018.1477210
SHIN Y C, PARK J S, JOO K I, et al. Optically isotropic liquid crystal mode templated by nanoporous breath figure membrane [J]. Advanced Materials Interfaces, 2022, 9(7): 2270034. doi: 10.1002/admi.202101919http://dx.doi.org/10.1002/admi.202101919
黄子强.液晶显示原理[M].2版.北京:国防工业出版社,2008.
HUANG Z Q. Principle of Liquid Crystal Display [M]. 2nd ed. Beijing: National Defense Industry Press, 2008. (in Chinese)
SINGH B P, SIKARWAR S, AGRAHARI K, et al. Electro-optical characterization of a weakly polar liquid crystalline compound influenced polyvinyl pyrrolidone capped gold nanoparticles [J]. Journal of Molecular Liquids, 2021, 325: 115172. doi: 10.1016/j.molliq.2020.115172http://dx.doi.org/10.1016/j.molliq.2020.115172
SUGIMURA A. Direct current screening effect on dip occurrence in nematic electro-optical modulation [J]. Journal of Applied Physics, 1991, 70(10): 5355-5361. doi: 10.1063/1.350216http://dx.doi.org/10.1063/1.350216
HA Y S, KIM H J, PARK H G, et al. Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping [J]. Optics Express, 2012, 20(6): 6448-6455. doi: 10.1364/oe.20.006448http://dx.doi.org/10.1364/oe.20.006448
ANDRIENKO D. Introduction to liquid crystals [J]. Journal of Molecular Liquids, 2018, 267: 520-541. doi: 10.1016/j.molliq.2018.01.175http://dx.doi.org/10.1016/j.molliq.2018.01.175
BERREMAN D W. Solid surface shape and the alignment of an adjacent nematic liquid crystal [J]. Physical Review Letters, 1972, 28(26): 1683-1686. doi: 10.1103/physrevlett.28.1683http://dx.doi.org/10.1103/physrevlett.28.1683
SEYEDNEJAD S R, MOZAFFARI M R. Conically degenerate anchoring effect in planar nematic-liquid-crystal shells [J]. Physical Review E, 2021, 104(1): 014701. doi: 10.1103/physreve.104.014701http://dx.doi.org/10.1103/physreve.104.014701
ŠKARABOT M, RYZHKOVA A V, MUŠEVIČ I. Interactions of single nanoparticles in nematic liquid crystal [J]. Journal of Molecular Liquids, 2018, 267: 384-389. doi: 10.1016/j.molliq.2018.01.068http://dx.doi.org/10.1016/j.molliq.2018.01.068
HUANG C Y, SELVARAJ P, SENGUTTUVAN G, et al. Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy [J]. Journal of Molecular Liquids, 2019, 286: 110902. doi: 10.1016/j.molliq.2019.110902http://dx.doi.org/10.1016/j.molliq.2019.110902
CHEN H Y, LEE W. Suppression of field screening in nematic liquid crystals by carbon nanotubes [J]. Applied Physics Letters, 2006, 88(22): 222105. doi: 10.1063/1.2208373http://dx.doi.org/10.1063/1.2208373
CHUNG H K, PARK H G, HA Y S, et al. Superior electro-optic properties of liquid crystal system using cobalt oxide nanoparticle dispersion [J]. Liquid Crystals, 2013, 40(5): 632-638. doi: 10.1080/02678292.2013.773092http://dx.doi.org/10.1080/02678292.2013.773092
LIU B, MA Y R, ZHAO D Y, et al. Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal [J]. Nano Research, 2017, 10(2): 618-625. doi: 10.1007/s12274-016-1321-5http://dx.doi.org/10.1007/s12274-016-1321-5
ESKALEN H. Influence of carbon quantum dots on electro-optical performance of nematic liquid crystal [J]. Applied Physics A, 2020, 126(9): 708. doi: 10.1007/s00339-020-03906-7http://dx.doi.org/10.1007/s00339-020-03906-7
WANG J, SHU H B, LIANG P, et al. Intriguing electronic structures and carrier mobilities of two-dimensional GaN nanosheets: thickness and surface effects [J]. Computational Materials Science, 2020, 172: 109337. doi: 10.1016/j.commatsci.2019.109337http://dx.doi.org/10.1016/j.commatsci.2019.109337
STUDENYAK I P, KOPČANSKÝ P, TIMKO M, et al. Effects of non-additive conductivity variation for a nematic liquid crystal caused by magnetite and carbon nanotubes at various scales [J]. Liquid Crystals, 2017, 44(11): 1709-1716. doi: 10.1080/02678292.2017.1315185http://dx.doi.org/10.1080/02678292.2017.1315185
MARTÍNEZ-MIRANDA L J, TRAISTER K M, MELÉNDEZ-RODRÍGUEZ I, et al. Liquid crystal-ZnO nanoparticle photovoltaics: role of nanoparticles in ordering the liquid crystal [J]. Applied Physics Letters, 2010, 97(22): 223301. doi: 10.1063/1.3511736http://dx.doi.org/10.1063/1.3511736
MA G S, JIA B B, ZHAO D Y, et al. Amorphous Mn3O4 nanocages with high-efficiency charge transfer for enhancing electro-optic properties of liquid crystals [J]. Small, 2019, 15(19): 1805475. doi: 10.1002/smll.201805475http://dx.doi.org/10.1002/smll.201805475
LI H, QIAN W T, PAN F, et al. Electro-optical dynamic behavior of a nematic liquid crystal lens with added multi-walled carbon nanotubes [J]. OSA Continuum, 2019, 2(3): 805-813. doi: 10.1364/osac.2.000805http://dx.doi.org/10.1364/osac.2.000805
KAUR S, SINGH S P, BIRADAR A M, et al. Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals [J]. Applied Physics Letters, 2007, 91(2): 023120. doi: 10.1063/1.2756136http://dx.doi.org/10.1063/1.2756136
DOS SANTOS R V, DE MELO P B, NUNES A M, et al. Electro-optical switching in twisted nematic samples doped with gold nanorods [J]. Journal of Molecular Liquids, 2019, 295: 111704. doi: 10.1016/j.molliq.2019.111704http://dx.doi.org/10.1016/j.molliq.2019.111704
KATIYAR R, AGRAHARI K, PATHAK G, et al. Silver nanoparticles dispersed in nematic liquid crystal: an impact on dielectric and electro-optical parameters [J]. Journal of Theoretical and Applied Physics, 2020, 14(3): 237-243. doi: 10.1007/s40094-020-00374-5http://dx.doi.org/10.1007/s40094-020-00374-5
JAYOTI D, MALIK P, SINGH A. Analysis of morphological behaviour and electro-optical properties of silica nanoparticles doped polymer dispersed liquid crystal composites [J]. Journal of Molecular Liquids, 2017, 225: 456-461. doi: 10.1016/j.molliq.2016.11.100http://dx.doi.org/10.1016/j.molliq.2016.11.100
SAEED M H, ZHANG S F, CAO Y P, et al. Recent advances in the polymer dispersed liquid crystal composite and its applications [J]. Molecules, 2020, 25(23): 5510. doi: 10.3390/molecules25235510http://dx.doi.org/10.3390/molecules25235510
GANEA C P, MANAILA-MAXIMEAN D, CÎRCU V. Dielectric investigations on carbon nanotubes doped polymer dispersed liquid crystal films [J]. The European Physical Journal Plus, 2020, 135(10): 797. doi: 10.1140/epjp/s13360-020-00795-whttp://dx.doi.org/10.1140/epjp/s13360-020-00795-w
MANAILA-MAXIMEAN D. Effective permittivity of a multi-phase system: nanoparticle-doped polymer-dispersed liquid crystal films [J]. Molecules, 2021, 26(5): 1441. doi: 10.3390/molecules26051441http://dx.doi.org/10.3390/molecules26051441
LIANG Z, ZHAO Y Z, GAO H, et al. Influence of ZnO NPs on morphological and electro-optical properties of polymer-dispersed liquid crystals [J]. Liquid Crystals, 2021, 48(12): 1699-1708. doi: 10.1080/02678292.2021.1898055http://dx.doi.org/10.1080/02678292.2021.1898055
ZHAO Y Z, LI J Q, YU Y, et al. Electro-optical characteristics of polymer dispersed liquid crystal doped with MgO nanoparticles [J]. Molecules, 2022, 27(21): 7265. doi: 10.3390/molecules27217265http://dx.doi.org/10.3390/molecules27217265
KUMARI A, SINHA A. Role of BaTiO3 nanoparticles on electro-optic performance of epoxy-resin-based PDLC devices [J]. Liquid Crystals, 2021, 48(1): 23-34. doi: 10.1080/02678292.2020.1762129http://dx.doi.org/10.1080/02678292.2020.1762129
MALIK P, CHAUDHARY A, MEHRA R, et al. Electrooptic and dielectric studies in cadmium sulphide nanorods/ferroelectric liquid crystal mixtures [J]. Advances in Condensed Matter Physics, 2012, 2012: 853160. doi: 10.1155/2012/853160http://dx.doi.org/10.1155/2012/853160
YADAV G, PATHAK G, AGRAHARI K, et al. Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles [J]. Chinese Physics B, 2019, 28(3): 034209. doi: 10.1088/1674-1056/28/3/034209http://dx.doi.org/10.1088/1674-1056/28/3/034209
PODGORNOV F V, GAVRILYAK M, KARAAWI A, et al. Mechanism of electrooptic switching time enhancement in ferroelectric liquid crystal/gold nanoparticles dispersion [J]. Liquid Crystals, 2018, 45(11): 1594-1602. doi: 10.1080/02678292.2018.1458256http://dx.doi.org/10.1080/02678292.2018.1458256
CHAUSOV D N, KURILOV A D, SMIRNOVA A I, et al. Mesomorphism, dielectric permittivity, and ionic conductivity of cholesterol tridecylate doped with few-layer graphite fragments [J]. Journal of Molecular Liquids, 2023, 374: 121139. doi: 10.1016/j.molliq.2022.121139http://dx.doi.org/10.1016/j.molliq.2022.121139
CHEMINGUI M, SINGH U B, YADAV N, et al. Effect of iron oxide (γ-Fe2O3) nanoparticles on the morphological, electro-optical and dielectric properties of a nematic liquid crystalline material [J]. Journal of Molecular Liquids, 2020, 319: 114299. doi: 10.1016/j.molliq.2020.114299http://dx.doi.org/10.1016/j.molliq.2020.114299
VAFAIE R, VAHEDI A, ZAKERHAMIDI M S, et al. Dielectric and electro optical properties of 6CHBT nematic liquid crystals doped with MgO nanoparticles [J]. Liquid Crystals, 2021, 48(10): 1417-1428. doi: 10.1080/02678292.2021.1876933http://dx.doi.org/10.1080/02678292.2021.1876933
FLEURY B, SENYUK B, TASINKEVYCH M, et al. Interplay of electrostatic dipoles and monopoles with elastic interactions in nematic liquid crystal nanocolloids [J]. Nano Letters, 2020, 20(11): 7835-7843. doi: 10.1021/acs.nanolett.0c02087http://dx.doi.org/10.1021/acs.nanolett.0c02087
ZHU D P, CHEN B H, CHEN Z, et al. Low-voltage polymer-stabilised blue-phase liquid crystals with oleic acid (OA)-modified LaF3 nanoparticles [J]. Liquid Crystals, 2018, 45(11): 1654-1660. doi: 10.1080/02678292.2018.1468502http://dx.doi.org/10.1080/02678292.2018.1468502
SOHN H R O, LIU C D, SMALYUKH I I. Schools of skyrmions with electrically tunable elastic interactions [J]. Nature Communications, 2019, 10(1): 4744. doi: 10.1038/s41467-019-12723-3http://dx.doi.org/10.1038/s41467-019-12723-3
LAPANIK A, RUDZKI A, KINKEAD B, et al. Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle-ferroelectric liquid crystal nanocomposites: influence of chain length and tethered liquid crystal functional groups [J]. Soft Matter, 2012, 8(33): 8722-8728. doi: 10.1039/c2sm25991ehttp://dx.doi.org/10.1039/c2sm25991e
PAGIDI S, MANDA R, BHATTACHARYYA S S, et al. Superior electro-optics of nano-phase encapsulated liquid crystals utilizing functionalized carbon nanotubes [J]. Composites Part B: Engineering, 2019, 164: 675-682. doi: 10.1016/j.compositesb.2019.01.091http://dx.doi.org/10.1016/j.compositesb.2019.01.091
KUMAR A, SINGH G, JOSHI T, et al. Electro-optical and dielectric characteristics of ferroelectric liquid crystal dispersed with palladium nanoparticles [J]. Journal of Molecular Liquids, 2020, 315: 113776. doi: 10.1016/j.molliq.2020.113776http://dx.doi.org/10.1016/j.molliq.2020.113776
BROUCKAERT N, PODOLIAK N, ORLOVA T, et al. Nanoparticle-induced property changes in nematic liquid crystals [J]. Nanomaterials, 2022, 12(3): 341. doi: 10.3390/nano12030341http://dx.doi.org/10.3390/nano12030341
KUMAR A, SINGH G, JOSHI T, et al. Tailoring of electro-optical properties of ferroelectric liquid crystals by doping Pd nanoparticles [J]. Applied Physics Letters, 2012, 100(5): 054102. doi: 10.1063/1.3681381http://dx.doi.org/10.1063/1.3681381
CHAUSOV D N, KURILOV A D, KUCHEROV R N, et al. Electro-optical performance of nematic liquid crystals doped with gold nanoparticles [J]. Journal of Physics: Condensed Matter, 2020, 32(39): 395102. doi: 10.1088/1361-648x/ab966chttp://dx.doi.org/10.1088/1361-648x/ab966c
ELKHALGI H H M, KHANDKA S, SINGH U B, et al. Dielectric and electro-optical properties of a nematic liquid crystalline material with gold nanoparticles [J]. Liquid Crystals, 2018, 45(12): 1795-1801. doi: 10.1080/02678292.2018.1487089http://dx.doi.org/10.1080/02678292.2018.1487089
VIMAL T, AGRAHARI K, SONKER R K, et al. Investigation of thermodynamical, dielectric and electro-optical parameters of nematic liquid crystal doped with polyaniline and silver nanoparticles [J]. Journal of Molecular Liquids, 2019, 290: 111241. doi: 10.1016/j.molliq.2019.111241http://dx.doi.org/10.1016/j.molliq.2019.111241
LEE H M, CHUNG H K, PARK H G, et al. Residual DC voltage-free behaviour of liquid crystal system with nickel nanoparticle dispersion [J]. Liquid Crystals, 2014, 41(2): 247-251. doi: 10.1080/02678292.2013.851291http://dx.doi.org/10.1080/02678292.2013.851291
PRAKASH J, KHAN S, CHAUHAN S, et al. Metal oxide-nanoparticles and liquid crystal composites: a review of recent progress [J]. Journal of Molecular Liquids, 2020, 297: 112052. doi: 10.1016/j.molliq.2019.112052http://dx.doi.org/10.1016/j.molliq.2019.112052
KOBAYASHI S, SAEKI Y, KODAIRA S, et al. Physical interpretation of the characteristics of LCDs embedded with MgO and SiO2 nanoparticles [J]. Journal of the Society for Information Display, 2008, 16(8): 871-874. doi: 10.1889/1.2966449http://dx.doi.org/10.1889/1.2966449
ZHAO D Y, XU L H, SHANG Y, et al. Facet-dependent electro-optical properties of cholesteric liquid crystals doped with Cu2O nanocrystals [J]. Nano Research, 2018, 11(9): 4836-4845. doi: 10.1007/s12274-018-2072-2http://dx.doi.org/10.1007/s12274-018-2072-2
MENG X S, LI J, LIN Y Q, et al. Effect of the magnetic nanoparticle concentration on the electro-optical properties of the polymer-dispersed liquid crystals [J]. Liquid Crystals, 2022, 49(12): 1612-1622. doi: 10.1080/02678292.2022.2046880http://dx.doi.org/10.1080/02678292.2022.2046880
OKUTAN M, YEŞILOT G, HARING BOLIVAR P. Contribution of multiwalled carbon nanotubes to dielectric and elastic properties in E7 nematic liquid crystal [J]. Journal of Molecular Liquids, 2022, 368: 120662. doi: 10.1016/j.molliq.2022.120662http://dx.doi.org/10.1016/j.molliq.2022.120662
KUMAR A, PRATAP SINGH D, SINGH G. Recent progress and future perspectives on carbon-nanomaterial-dispersed liquid crystal composites [J]. Journal of Physics D: Applied Physics, 2022, 55(8): 083002. doi: 10.1088/1361-6463/ac2cedhttp://dx.doi.org/10.1088/1361-6463/ac2ced
张伟伟,李鹏飞,沈金荣,等.多壁碳纳米管掺杂的聚合物分散液晶光栅的电光特性[J].液晶与显示,2020,35(11):1095-1102. doi: 10.37188/YJYXS20203511.1095http://dx.doi.org/10.37188/YJYXS20203511.1095
ZHANG W W, LI P F, SHEN J R, et al. Electro-optical characteristics of polymer-dispersed liquid crystal gratings doped with multi-walled carbon nanotubes [J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(11): 1095-1102. (in Chinese). doi: 10.37188/YJYXS20203511.1095http://dx.doi.org/10.37188/YJYXS20203511.1095
RASTOGI A, HEGDE G, MANOHAR T, et al. Effect of oil palm leaf-based carbon quantum dot on nematic liquid crystal and its electro-optical effects [J]. Liquid Crystals, 2021, 48(6): 812-831. doi: 10.1080/02678292.2020.1817997http://dx.doi.org/10.1080/02678292.2020.1817997
ZHAI F, FENG Y Y, ZHOU K, et al. Graphene-based chiral liquid crystal materials for optical applications [J]. Journal of Materials Chemistry C, 2019, 7(8): 2146-2171. doi: 10.1039/c8tc04947ehttp://dx.doi.org/10.1039/c8tc04947e
SHUKLA R K, MIRZAEI J, SHARMA A, et al. Electro-optic and dielectric properties of a ferroelectric liquid crystal doped with chemically and thermally stable emissive carbon dots [J]. RSC Advances, 2015, 5(43): 34491-34496. doi: 10.1039/c5ra01257khttp://dx.doi.org/10.1039/c5ra01257k
GÖKÇEN M, YILDIRIM M, KÖYSAL O. Dielectric and AC electrical conductivity characteristics of liquid crystal doped with graphene [J]. The European Physical Journal Applied Physics, 2012, 60(3): 30104. doi: 10.1051/epjap/2012120245http://dx.doi.org/10.1051/epjap/2012120245
GARBOVSKIY Y, GLUSHCHENKO A. Ferroelectric nanoparticles in liquid crystals: recent progress and current challenges [J]. Nanomaterials, 2017, 7(11): 361. doi: 10.3390/nano7110361http://dx.doi.org/10.3390/nano7110361
LIANG H H, XIAO Y Z, HSH F J, et al. Enhancing the electro-optical properties of ferroelectric liquid crystals by doping ferroelectric nanoparticles [J]. Liquid Crystals, 2010, 37(3): 255-261. doi: 10.1080/02678290903564403http://dx.doi.org/10.1080/02678290903564403
SHOARINEJAD S, MOHAMMADI SIAHBOOMI R. Ordering behavior and electric response of a ferroelectric nano-doped liquid crystal with ion impurity effects [J]. Journal of Applied Physics, 2021, 129(2): 025101. doi: 10.1063/5.0027493http://dx.doi.org/10.1063/5.0027493
NIMMY JOHN V, VARANAKKOTTU S N, FlexibleVARGHESE S. ferroelectric nanoparticle doped polymer dispersed liquid crystal devices for lower switching voltage and nanoenergy generation [J]. Optical Materials, 2018, 80: 233-240. doi: 10.1016/j.optmat.2018.05.003http://dx.doi.org/10.1016/j.optmat.2018.05.003
HE T Y, YANG B, ZHANG L, et al. A study on electro-optical properties of polymer dispersed liquid crystal films doped with barium titanate nanoparticles prepared by nucleophile-initiated thiol-ene click reaction [J]. Liquid Crystals, 2020, 47(7): 1004-1018. doi: 10.1080/02678292.2019.1701112http://dx.doi.org/10.1080/02678292.2019.1701112
KEMPAIAH R, LIU Y J, NIE Z H, et al. Giant soft-memory in liquid crystal nanocomposites [J]. Applied Physics Letters, 2016, 108(8): 083105. doi: 10.1063/1.4942593http://dx.doi.org/10.1063/1.4942593
GDOVINOVÁ V, TOMAŠOVIČOVÁ N, JENG S C, et al. Memory effect in nematic phase of liquid crystal doped with magnetic and non-magnetic nanoparticles [J]. Journal of Molecular Liquids, 2019, 282: 286-291. doi: 10.1016/j.molliq.2019.03.001http://dx.doi.org/10.1016/j.molliq.2019.03.001
VARSHNEY D, ANU, PRAKASH J, et al. Probing the impact of bismuth-titanate based nanocomposite on the dielectric and electro-optical features of a nematic liquid crystal material [J]. Journal of Molecular Liquids, 2022, 347: 118389. doi: 10.1016/j.molliq.2021.118389http://dx.doi.org/10.1016/j.molliq.2021.118389
BASU R. Soft memory in a ferroelectric nanoparticle-doped liquid crystal [J]. Physical Review E, 2014, 89(2): 022508. doi: 10.1103/physreve.89.022508http://dx.doi.org/10.1103/physreve.89.022508
PARVEEN A, PRAKASH J, SINGH G. Impact of strontium titanate nanoparticles on the dielectric, electro-optical and electrical response of a nematic liquid crystal [J]. Journal of Molecular Liquids, 2022, 354: 118907. doi: 10.1016/j.molliq.2022.118907http://dx.doi.org/10.1016/j.molliq.2022.118907
ZHANG B K, WANG D B, CAO J M, et al. Efficient doping induced by charge transfer at the hetero-interface to enhance photocatalytic performance [J]. ACS Applied Materials & Interfaces, 2023, 15(10): 12924-12935. doi: 10.1021/acsami.2c19209http://dx.doi.org/10.1021/acsami.2c19209
ZHANG H, AN Q, SU Y, et al. Co3O4 with upshifted d-band center and enlarged specific surface area by single-atom Zr doping for enhanced PMS activation [J]. Journal of Hazardous Materials, 2023, 448: 130987. doi: 10.1016/j.jhazmat.2023.130987http://dx.doi.org/10.1016/j.jhazmat.2023.130987
YU J, ZHANG J, ZENG T, et al. Stable incorporation of MnOx quantum dots into N-doped hollow carbon: a synergistic peroxymonosulfate activator for enhanced removal of bisphenol A [J]. Separation and Purification Technology, 2019, 213: 264-275. doi: 10.1016/j.seppur.2018.12.044http://dx.doi.org/10.1016/j.seppur.2018.12.044
0
浏览量
182
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构