1.南方科技大学 电子与电气工程系, 广东 深圳 518055
[ "刘红均(1991—),男,四川人,博士,副研究员,2018年于法国格勒诺布尔阿尔卑斯大学获得博士学位,主要从事半导体材料、太阳能电池和光学超表面方面的研究。E-mail:liuhongjun7@hotmail.com" ]
[ "邱成峰(1961—),男,广东深圳人,博士,教授,1993年于西安交通大学获得博士学位,主要从事发光显示技术领域的研究。E-mail:qiucf@sitan.org" ]
[ "刘召军(1979—),男,中国香港人,博士,研究员,2010年于香港科技大学获得博士学位,主要从事先进显示与AR/VR技术与第三代半导体电子器件与发光器件领域的研究。E-mail:liuzj@sustech.edu.cn" ]
扫 描 看 全 文
刘红均, 邱成峰, 刘召军. 基于VA液晶的激光扫描器件及响应速度调制[J]. 液晶与显示, 2023,38(9):1178-1184.
LIU Hong-jun, QIU Cheng-feng, LIU Zhao-jun. Laser scanning device and response speed modulation based on VA liquid crystal[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(9):1178-1184.
刘红均, 邱成峰, 刘召军. 基于VA液晶的激光扫描器件及响应速度调制[J]. 液晶与显示, 2023,38(9):1178-1184. DOI: 10.37188/CJLCD.2023-0174.
LIU Hong-jun, QIU Cheng-feng, LIU Zhao-jun. Laser scanning device and response speed modulation based on VA liquid crystal[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(9):1178-1184. DOI: 10.37188/CJLCD.2023-0174.
本文在带有锯齿型ITO电极的基底上制备垂直排列(Vertical Aligned, VA)的液晶器件,将激光耦合在液晶层中,调制ITO电极的电压,出射激光实现了偏转并且偏转角随电压的增加而增大直至饱和。在两个顶角为20°的锯齿电极下,激光光斑偏转了约4°。用于液晶驱动的电压为交流电信号,通过调整最低驱动电压即偏置电压,使得液晶分子从一定的起始角度开始转动,同时也是在其可快速旋转的区间内进行驱动,从而提高液晶分子的响应速度。在此策略的指导下,通过在液晶分子转动时对其偏振态的表征,来确定液晶分子的状态与驱动速度。在平衡好折射率与驱动速度的前提下,对比了不同偏置电压下液晶层分子整体的响应速度。在有一定偏置电压的情况下,液晶层驱动的响应时间从55 ms下降至2.5 ms,而断电后的弛豫时间从18 ms下降至8.5 ms。这为后续采用这种液晶层方案的激光偏转器件获得更快速的扫描频率和扫描角度提供了新的方案。
In this work, the vertically aligned (VA) liquid crystal devices are prepared on a substrate with serrated ITO electrodes, the laser is coupled into the liquid crystal layer, and the voltage of the ITO electrodes is modulated. The output laser achieves deflection and the deflection angle increases with the increase of voltage until saturation. Under two serrated electrodes with a top angle of 20°, the laser spot deflects by about 4°. At the same time, since the voltage used for driving liquid crystals is an AC signal, by adjusting the minimum driving voltage, which is the bias voltage, the liquid crystal molecules start to rotate from a certain starting angle and are also driven within their fast rotation range, thereby improving the response speed of the liquid crystal molecules.Under the guidance of this strategy, the state and driving speed of liquid crystal molecules are determined by characterizing their polarization state during their rotation. Under the premise of balancing the refractive index and driving speed, the overall response speed of liquid crystal layer molecules under different bias voltages is compared. Under a certain bias voltage, the response time driven by the liquid crystal layer decreases from 55 ms to 2.5 ms, while the relaxation time after power outage decreases from 18 ms to 8.5 ms. This provides a new solution for laser deflection devices using this liquid crystal layer scheme to achieve faster scanning frequency and scanning angle in the future.
激光偏转液晶器件液晶分子驱动
laser deflectionliquid crystal deviceliquid crystal molecular drive
ILAS C. Electronic sensing technologies for autonomous ground vehicles: a review [C]. 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE). Bucharest: IEEE, 2013: 1-6. doi: 10.1109/atee.2013.6563528http://dx.doi.org/10.1109/atee.2013.6563528
HALIR R, BOCK P J, CHEBEN P, et al. Waveguide sub-wavelength structures: a review of principles and applications [J]. Laser & Photonics Reviews, 2015, 9(1): 25-49. doi: 10.1002/lpor.201400083http://dx.doi.org/10.1002/lpor.201400083
LOHANI B, GHOSH S. Airborne LiDAR technology: a review of data collection and processing systems [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2017, 87(4): 567-579. doi: 10.1007/s40010-017-0435-9http://dx.doi.org/10.1007/s40010-017-0435-9
JABOYEDOFF M, OPPIKOFER T, ABELLÁN A, et al. Use of LIDAR in landslide investigations: a review [J]. Natural Hazards, 2012, 61(1): 5-28. doi: 10.1007/s11069-010-9634-2http://dx.doi.org/10.1007/s11069-010-9634-2
BERINI P. Optical beam steering using tunable metasurfaces [J]. ACS Photonics, 2022, 9(7): 2204-2218. doi: 10.1021/acsphotonics.2c00439http://dx.doi.org/10.1021/acsphotonics.2c00439
ENGSTRÖM D, O’CALLAGHAN M J, WALKER C, et al. Fast beam steering with a ferroelectric-liquid-crystal optical phased array [J]. Applied Optics, 2009, 48(9): 1721-1726. doi: 10.1364/ao.48.001721http://dx.doi.org/10.1364/ao.48.001721
YUAN R, LIU Y, TAN Q G, et al. An all-liquid-crystal strategy for fast orbital angular momentum encoding and optical vortex steering [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(5): 6000106. doi: 10.1109/jstqe.2021.3136360http://dx.doi.org/10.1109/jstqe.2021.3136360
WEI T, CHEN P, TANG M, et al. Liquid-crystal-mediated active waveguides toward programmable integrated optics [J]. Advanced Optical Materials, 2020, 8(10): 1902033. doi: 10.1002/adom.201902033http://dx.doi.org/10.1002/adom.201902033
YANG H N, ROBERTSON B, WILKINSON P, et al. Small phase pattern 2D beam steering and a single LCOS design of 40 1×12 stacked wavelength selective switches [J]. Optics Express, 2016, 24(11): 12240-12253. doi: 10.1364/oe.24.012240http://dx.doi.org/10.1364/oe.24.012240
JOHNSON K M, MCKNIGHT D J, UNDERWOOD I. Smart spatial light modulators using liquid crystals on silicon [J]. IEEE Journal of Quantum Electronics, 1993, 29(2): 699-714. doi: 10.1109/3.199323http://dx.doi.org/10.1109/3.199323
DAVIS S R, ROMMEL S D, JOHNSON S, et al. Liquid crystal clad waveguide laser scanner and waveguide amplifier for LADAR and sensing applications [C]//Proceeding of SPIE 9365, Integrated Optics: Devices, Materials, and Technologies XIX. San Francisco: SPIE, 2015: 93650N. doi: 10.1117/12.2077061http://dx.doi.org/10.1117/12.2077061
DAVIS S R, FARCA G, ROMMEL S D, et al. Liquid crystal waveguides: new devices enabled by>1 000 waves of optical phase control [C]//Proceeding of SPIE 7618, . San Francisco: SPIE, 2010: 76180E. doi: 10.1117/12.851788http://dx.doi.org/10.1117/12.851788
YANG D K, WU S T. Fundamentals of Liquid Crystal Devices [M]. Hoboken: Wiley, 2006. doi: 10.1002/0470032030http://dx.doi.org/10.1002/0470032030
KELLER S D, UYENO G P, LYNCH T, et al. Emerging liquid crystal waveguide technology for low SWaP active short-wave infrared imagers [C]//Proceeding of SPIE 9384, . San Francisco: SPIE, 2015: 93840M. doi: 10.1117/12.2076835http://dx.doi.org/10.1117/12.2076835
0
浏览量
142
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构