1.河北工业大学 理学院, 天津 300401
[ "许雪敬(1997—),女,河北沧州人,硕士研究生,2016年于河北民族师范学院获得学士学位,主要从事液晶材料与液晶器件物理方面的研究。E-mail:1264997314@qq.com" ]
[ "朱吉亮(1982—),男,山东济南人,博士,副教授,2014年于上海交通大学获得博士学位,主要从事液晶光子学器件的研究。E-mail:jlzhu@hebut.edu.cn" ]
扫 描 看 全 文
许雪敬, 高涵, 朱吉亮. 刺激响应性胆甾型液晶软光子彩膜[J]. 液晶与显示, 2023,38(8):997-1004.
XU Xue-jing, GAO Han, ZHU Ji-liang. Stimuli-responsive cholesteric liquid crystal soft photonic color film[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):997-1004.
许雪敬, 高涵, 朱吉亮. 刺激响应性胆甾型液晶软光子彩膜[J]. 液晶与显示, 2023,38(8):997-1004. DOI: 10.37188/CJLCD.2023-0138.
XU Xue-jing, GAO Han, ZHU Ji-liang. Stimuli-responsive cholesteric liquid crystal soft photonic color film[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):997-1004. DOI: 10.37188/CJLCD.2023-0138.
为实现软光子晶体图案的多重信息加密或存储,本文基于硫醇-丙烯酸酯Michael加成和光聚合反应设计并制备了一种刺激响应性胆甾型液晶(cholesteric liquid crystal, CLC)软光子彩膜。首先,通过改变反应混合物中手性剂的比重调节初始彩膜结构色;其次,用小分子液晶稀释液晶前聚体;最后,通过紫外光固化对单层软光子彩膜进行交联密度的时间编程,同时借助掩膜曝光技术对其纳米结构进行空间编程。实验结果表明,虽然在超600 min的反应过程中软光子彩膜的布拉格反射中心波长仅移动了19 nm,但是通过时间-空间双重编程局部修改其变色响应,可使带有隐形图案的软光子薄膜在应力作用下逐渐呈现从红到绿的多彩外观,反射波长覆盖范围超过100 nm。这种刺激响应性软光子彩膜在光子晶体图案的动态显示、防伪、信息存储等领域具有重要的应用价值。
In order to realize multiple information encryption or storage of soft photonic crystal patterns, a stimuli-responsive cholesteric liquid crystal (CLC) soft photonic color film is designed and fabricated based on the thiol-acrylate Michael addition and photopolymerization reaction. First, the initial color of the reaction mixture is adjusted by changing the ratio of the doping chiral agent. Then small molecule liquid crystal is added into the mixture to adjust its viscosity. Finally, the temporal programming of the cross-linking density of the CLC soft photonic color film is carried out by ultraviolet (UV) exposure at different stages of the reaction, and the spatial programming is performed cooperatively with the help of photomasks. The experimental results indicate that the Bragg reflection wavelength of the CLC film only moves 19 nm during the reaction process of over 600 min. However, by locally modifying its color response ,via, spatio-temporally dual-programming, the soft photonic film with invisible patterns can be made to gradually take on a colorful appearance from red to green with stretching, and reflected wavelength coverage over 100 nm. This stimuli-responsive soft photonic color film can be employed for the dynamic display of photonic crystal patterns, and is potentially useful for multiple anti-counterfeiting or information storage.
刺激响应性胆甾型液晶软光子彩膜Michael加成反应时间-空间双编程
stimulus responsivenesscholesteric liquid crystalsoft photonic color filmmichael addition reactionspatio-temporal dual-programming
BRANNUM M T, STEELE A M, VENETOS M C, et al. Light control with liquid crystalline elastomers [J]. Advanced Optical Materials, 2019, 7(6): 1801683. doi: 10.1002/adom.201801683http://dx.doi.org/10.1002/adom.201801683
KIZHAKIDATHAZHATH R, GENG Y, JAMPANI V S R, et al. Facile anisotropic deswelling method for realizing large‐area cholesteric liquid crystal elastomers with uniform structural color and broad‐range mechanochromic response [J]. Advanced Functional Materials, 2020, 30(7): 1909537. doi: 10.1002/adfm.201909537http://dx.doi.org/10.1002/adfm.201909537
高文慧,郭瑞彩,李小帅,等. 聚合物稳定胆甾相液晶的低压致反射带隙展宽[J]. 液晶与显示,2022,37(8):997-1007. doi: 10.37188/CJLCD.2022-0164http://dx.doi.org/10.37188/CJLCD.2022-0164
GAO W H, GUO R C, LI X S, et al. Reflection band gap broadening of polymer-stabilized cholesteric liquid crystal by low voltage [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(8): 997-1007. (in Chinese). doi: 10.37188/CJLCD.2022-0164http://dx.doi.org/10.37188/CJLCD.2022-0164
SUN D P, ZHENG L, XU X J, et al. Multi-functional stimuli-responsive biomimetic flower assembled from CLCE and MOF-based pedals [J]. Chinese Chemical Letters, 2023, 34(1): 107208. doi: 10.1016/j.cclet.2022.02.014http://dx.doi.org/10.1016/j.cclet.2022.02.014
翟飞,封伟. 4D打印液晶弹性体软体机器人及其热致运动行为[J]. 应用化学,2021,38(10):1389-1396. doi: 10.1016/j.matt.2021.08.014http://dx.doi.org/10.1016/j.matt.2021.08.014
ZHAI F, FENG W. 4D printed liquid crystal elastomer soft robot and its thermal derived motion behavior [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1389-1396. (in Chinese). doi: 10.1016/j.matt.2021.08.014http://dx.doi.org/10.1016/j.matt.2021.08.014
胡文婷,左波,聂振洲,等. 光驱动液晶弹性体扭曲环带软致动器的有限元分析[J]. 应用化学,2021,38(10):1397-1404. doi: 10.19894/j.issn.1000-0518.210339http://dx.doi.org/10.19894/j.issn.1000-0518.210339
HU W T, ZUO B, NIE Z Z, et al. Finite element analysis of light-driven liquid crystal elastomer twisted toroidal ribbon soft actuators [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1397-1404. (in Chinese). doi: 10.19894/j.issn.1000-0518.210339http://dx.doi.org/10.19894/j.issn.1000-0518.210339
邹呈,高延子,于美娜,等. 液晶/高分子复合材料及其在反式电控调光膜中的应用研究进展[J]. 应用化学,2021,38(10):1213-1225. doi: 10.19894/j.issn.1000-0518.210373http://dx.doi.org/10.19894/j.issn.1000-0518.210373
ZOU C, GAO Y Z, YU M N, et al. Recent advances in liquid crystal/polymer composites and their applications in reverse-mode electrically switchable light-transmittance controllable films [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1213-1225. (in Chinese). doi: 10.19894/j.issn.1000-0518.210373http://dx.doi.org/10.19894/j.issn.1000-0518.210373
张帅,杨洋,吉岩,等. 磁响应液晶弹性体材料研究进展[J]. 应用化学,2021,38(10):1299-1309. doi: 10.19894/j.issn.1000-0518.210316http://dx.doi.org/10.19894/j.issn.1000-0518.210316
ZHANG S, YANG Y, JI Y, et al. Research process on magneto-responsive liquid crystalline elastomers [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1299-1309. (in Chinese). doi: 10.19894/j.issn.1000-0518.210316http://dx.doi.org/10.19894/j.issn.1000-0518.210316
KOSE O, TRAN A, LEWIS L, et al. Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics [J]. Nature Communications, 2019, 10(1): 510. doi: 10.1038/s41467-019-08351-6http://dx.doi.org/10.1038/s41467-019-08351-6
ZHANG P, ZHOU G F, DE HAAN L T, et al. 4D chiral photonic actuators with switchable hyper‐reflectivity [J]. Advanced Functional Materials, 2021, 31(9): 2007887. doi: 10.1002/adfm.202007887http://dx.doi.org/10.1002/adfm.202007887
ZHANG W X, FROYEN A A F, SCHENNING A P H J, et al. Temperature‐responsive photonic devices based on cholesteric liquid crystals [J]. Advanced Photonics Research, 2021, 2(7): 2100016. doi: 10.1002/adpr.202100016http://dx.doi.org/10.1002/adpr.202100016
MULDER D J, SCHENNING A P H J, BASTIAANSEN C W M. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors [J]. Journal Materials Chemistry C, 2014, 2(33): 6695-6705. doi: 10.1039/c4tc00785ahttp://dx.doi.org/10.1039/c4tc00785a
OGIWARA A, KAKIUCHIDA H. Thermally tunable light filter composed of cholesteric liquid crystals with different temperature dependence [J]. Solar Energy Materials and Solar Cells, 2016, 157: 250-258. doi: 10.1016/j.solmat.2016.05.039http://dx.doi.org/10.1016/j.solmat.2016.05.039
SUN C L, LU J G. Effect of sectional polymerization process on tunable twist structure liquid crystal filters [J]. Crystals, 2019, 9(5): 268. doi: 10.3390/cryst9050268http://dx.doi.org/10.3390/cryst9050268
MARTINEZ A M, MCBRIDE M K, WHITE T J, et al. Reconfigurable and spatially programmable chameleon skin-like material utilizing light responsive covalent adaptable cholesteric liquid crystal elastomers [J]. Advanced Functional Materials, 2020, 30(35): 2003150. doi: 10.1002/adfm.202003150http://dx.doi.org/10.1002/adfm.202003150
HONG W, YUAN Z K, CHEN X D. Structural color materials for optical anticounterfeiting [J]. Small, 2020, 16(16): 1907626. doi: 10.1002/smll.201907626http://dx.doi.org/10.1002/smll.201907626
ZHANG P, KRAGT A J J, SCHENNING A P H J, et al. An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns [J]. Journal of Materials Chemistry C, 2018, 6(27): 7184-7187. doi: 10.1039/c8tc02252fhttp://dx.doi.org/10.1039/c8tc02252f
STUMPEL J E, GIL E R, SPOELSTRA A B, et al. Stimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogels [J]. Advanced Functional Materials, 2015, 25(22): 3314-3320. doi: 10.1002/adfm.201500745http://dx.doi.org/10.1002/adfm.201500745
KRAGT A J J, BROER D J, SCHENNING A P H J. Easily processable and programmable responsive semi‐interpenetrating liquid crystalline polymer network coatings with changing reflectivities and surface topographies [J]. Advanced Functional Materials, 2018, 28(6): 1704756. doi: 10.1002/adfm.201704756http://dx.doi.org/10.1002/adfm.201704756
MOIRANGTHEM M, ENGELS T A P, MURPHY J, et al. Photonic shape memory polymer with stable multiple colors [J]. ACS Applied Materials & Interfaces, 2017, 9(37): 32161-32167. doi: 10.1021/acsami.7b10198http://dx.doi.org/10.1021/acsami.7b10198
CHEN K, ZHANG Y X, GE J P. Highly invisible photonic crystal patterns encrypted in an inverse opaline macroporous polyurethane film for anti-counterfeiting applications [J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45256-45264. doi: 10.1021/acsami.9b18995http://dx.doi.org/10.1021/acsami.9b18995
MOIRANGTHEM M, SCHENNING A P H J. Full color camouflage in a printable photonic blue-colored polymer [J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4168-4172. doi: 10.1021/acsami.7b17892http://dx.doi.org/10.1021/acsami.7b17892
KRAGT A J J, ZUURBIER N C M, BROER D J, et al. Temperature-responsive, multicolor-changing photonic polymers [J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28172-28179. doi: 10.1021/acsami.9b08827http://dx.doi.org/10.1021/acsami.9b08827
SAED M O, TORBATI A H, STARR C A, et al. Thiol-acrylate main-chain liquid-crystalline elastomers with tunable thermomechanical properties and actuation strain [J]. Journal of Polymer Science Part B: Polymer Physics, 2017, 55(2): 157-168. doi: 10.1002/polb.24249http://dx.doi.org/10.1002/polb.24249
YAKACKI C M, SAED M, NAIR D P, et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction [J]. RSC Advances, 2015, 5(25): 18997-19001. doi: 10.1039/c5ra01039jhttp://dx.doi.org/10.1039/c5ra01039j
VAN HEESWIJK E P A, YANG L T, GROSSIORD N, et al. Tunable photonic materials via monitoring step‐growth polymerization kinetics by structural colors [J]. Advanced Functional Materials, 2020, 30(7): 1906833. doi: 10.1002/adfm.201906833http://dx.doi.org/10.1002/adfm.201906833
SAED M O, TORBATI A H, NAIR D P, et al. Synthesis of programmable main-chain liquid-crystalline elastomers using a two-stage thiol-acrylate reaction [J]. Journal of Visualized Experiments, 2016(107): e53546. doi: 10.3791/53546http://dx.doi.org/10.3791/53546
HEBNER T S, FOWLER H E, HERBERT K M, et al. Polymer network structure, properties, and formation of liquid crystalline elastomers prepared via thiol–acrylate chain transfer reactions [J]. Macromolecules, 2021, 54(23): 11074-11082. doi: 10.1021/acs.macromol.1c01919http://dx.doi.org/10.1021/acs.macromol.1c01919
HOYLE C E, BOWMAN C N. Thiol-ene click chemistry [J]. Angewandte Chemie International Edition, 2010, 49(9): 1540-1573. doi: 10.1002/anie.200903924http://dx.doi.org/10.1002/anie.200903924
LEE T Y, SMITH Z, REDDY S K, et al. Thiol-allyl ether-methacrylate ternary systems. Polymerization Mechanism [J]. Macromolecules, 2007, 40(5): 1466-1472. doi: 10.1021/ma062494bhttp://dx.doi.org/10.1021/ma062494b
MAO Y, TERENTJEV E M, WARNER M. Cholesteric elastomers: deformable photonic solids [J]. Physical Review E, 2001, 64(4): 041803. doi: 10.1103/physreve.64.041803http://dx.doi.org/10.1103/physreve.64.041803
WARNER M, TERENTJEV E M, MEYER R B, et al. Untwisting of a cholesteric elastomer by a mechanical field [J]. Physical Review Letters, 2000, 85(11): 2320-2323. doi: 10.1103/physrevlett.85.2320http://dx.doi.org/10.1103/physrevlett.85.2320
ZHANG P, SHI X Y, SCHENNING A P H J, et al. A patterned mechanochromic photonic polymer for reversible image reveal [J]. Advanced Materials Interfaces, 2020, 7(3): 1901878. doi: 10.1002/admi.201901878http://dx.doi.org/10.1002/admi.201901878
0
浏览量
119
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构