1.电子科技大学 光电科学与工程学院, 四川 成都 611731
[ "刘豪(1999—)男,河北石家庄人,硕士研究生,2021年于电子科技大学获得学士学位,主要从事液晶透镜的设计应用。E-mail:202121050129@std.uestc.edu.cn" ]
[ "叶茂(1964—)男,四川成都人,博士,教授,1989年于四川大学获得硕士学位,主要从事液晶透镜方面的研究。E-mail:mao_ye@uestc.edu.cn" ]
扫 描 看 全 文
刘豪, 冯文斌, 刘志强, 等. 同心圆环电极结构的液晶透镜特性[J]. 液晶与显示, 2023,38(9):1171-1177.
LIU Hao, FENG Wen-bin, LIU Zhi-qiang, et al. Characteristics of liquid crystal lens with concentric ring electrode structure[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(9):1171-1177.
刘豪, 冯文斌, 刘志强, 等. 同心圆环电极结构的液晶透镜特性[J]. 液晶与显示, 2023,38(9):1171-1177. DOI: 10.37188/CJLCD.2023-0102.
LIU Hao, FENG Wen-bin, LIU Zhi-qiang, et al. Characteristics of liquid crystal lens with concentric ring electrode structure[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(9):1171-1177. DOI: 10.37188/CJLCD.2023-0102.
液晶透镜的液晶层内相位分布通常不是理想的抛物线结构,这给液晶透镜的成像应用带来限制。本文采用基于液晶的线性响应区域设计的电极结构制作液晶透镜,通过对液晶透镜工作时的前信息进行分析,测出液晶透镜的光焦度和光学像差。在由相机模块和执行调焦功能的液晶透镜组成的成像系统中,通过对经过液晶透镜后所成的图像进行定量研究。分析成像系统形成的ISO12233图标的图像,获得成像系统的分辨能力。结果表明,该液晶透镜驱动简单,光焦度与驱动电压差符合线性关系,可在-4.9~+5.2 D范围调节,同时具有低于0.05,λ,的光学像差。在成像系统的应用中,在对主镜头分辨能力影响不大的情况下,该液晶透镜表现出优异的调焦性能。
The phase distribution within the liquid crystal layer of a liquid crystal lens is usually not an ideal parabolic structure, which limits the imaging application of liquid crystal lenses. Using an electrode structure designed based on the linear response region of liquid crystal, a liquid crystal lens is produced. By analyzing the front information of liquid crystal lens waves during operation, the optical power and optical aberration of the liquid crystal lens can be measured. In an imaging system composed of a camera module and a liquid crystal lens that performs a focusing function, quantitative research is conducted on the image formed after passing through the liquid crystal lens. The image of the ISO12233 icon formed by the imaging system is analyzed to obtain the resolution of the imaging system. The results show that the driving of the liquid crystal lens is simple, and the relationship between the optical power and the driving voltage difference is linear, which can be adjusted in the range of -4.9 to+5.2 D, and has a lower than 0.05,λ, optical aberration. In the application of imaging systems, the liquid crystal lens exhibit excellent focusing performance with little impact on the resolution of the main lens.
液晶器件液晶透镜透镜调制传递函数
liquid crystal deviceliquid crystal lenseslensmodulation transfer function
BERGE B, PESEUX J. Variable focal lens controlled by an external voltage: An application of electrowetting [J]. The European Physical Journal E, 2000, 3(2): 159-163. doi: 10.1007/s101890070029http://dx.doi.org/10.1007/s101890070029
KUIPER S, HENDRIKS B H W. Variable-focus liquid lens for miniature cameras [J]. Applied Physics Letters, 2004, 85(7): 1128-1130. doi: 10.1063/1.1779954http://dx.doi.org/10.1063/1.1779954
REN H W, WU S T. Variable-focus liquid lens [J]. Optics Express, 2007, 15(10): 5931-5936. doi: 10.1364/oe.15.005931http://dx.doi.org/10.1364/oe.15.005931
SATO S. Liquid-crystal lens-cells with variable focal length [J]. Japanese Journal of Applied Physics, 1979, 18(9): 1679-1684. doi: 10.1143/jjap.18.1679http://dx.doi.org/10.1143/jjap.18.1679
NOSE T, SATO S. A liquid crystal microlens obtained with a non-uniform electric field [J]. Liquid Crystals, 1989, 5(5): 1425-1433. doi: 10.1080/02678298908027780http://dx.doi.org/10.1080/02678298908027780
NAUMOV A F, LOKTEV M Y, GURALNIK I R, et al. Liquid-crystal adaptive lenses with modal control [J]. Optics Letters, 1998, 23(13): 992-994. doi: 10.1364/ol.23.000992http://dx.doi.org/10.1364/ol.23.000992
YE M, WANG B, SATO S. Liquid-crystal lens with a focal length that is variable in a wide range [J]. Applied Optics, 2004, 43(35): 6407-6412. doi: 10.1364/ao.43.006407http://dx.doi.org/10.1364/ao.43.006407
LIN Y H, REN H W, FAN-CHIANG K H, et al. Tunable-focus cylindrical liquid crystal lenses [J]. Japanese Journal of Applied Physics, 2005, 44(1R): 243. doi: 10.1143/jjap.44.243http://dx.doi.org/10.1143/jjap.44.243
FUH A Y G, KO S W, HUANG S H, et al. Polarization-independent liquid crystal lens based on axially symmetric photoalignment [J]. Optics Express, 2011, 19(3): 2294-2300. doi: 10.1364/oe.19.002294http://dx.doi.org/10.1364/oe.19.002294
LIN C H, CHEN C H, CHIANG R H, et al. Dual-frequency liquid-crystal lenses based on a surface-relief dielectric structure on an electrode [J]. IEEE Photonics Technology Letters, 2011, 23(24): 1875-1877. doi: 10.1109/lpt.2011.2170410http://dx.doi.org/10.1109/lpt.2011.2170410
KAWAMURA M, NAKAMURA K, SATO S. Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes [J]. Optics Express, 2013, 21(22): 26520-26526. doi: 10.1364/oe.21.026520http://dx.doi.org/10.1364/oe.21.026520
NAUMOV A F, LOVE G D, LOKTEV M Y, et al. Control optimization of spherical modal liquid crystal lenses [J]. Optics Express, 1999, 4(9): 344-352. doi: 10.1364/oe.4.000344http://dx.doi.org/10.1364/oe.4.000344
KOTOVA S P, PATLAN’ V V, SAMAGIN S A. Tunable liquid-crystal focusing device. 1. Theory [J]. Quantum Electronics, 2011, 41(1): 58-64. doi: 10.1070/qe2011v041n01abeh014406http://dx.doi.org/10.1070/qe2011v041n01abeh014406
ALGORRI J F, MORAWIAK P, BENNIS N, et al. Positive-negative tunable liquid crystal lenses based on a microstructured transmission line [J]. Scientific Reports, 2020, 10(1): 10153. doi: 10.1038/s41598-020-67141-zhttp://dx.doi.org/10.1038/s41598-020-67141-z
ALGORRI J F, ZOGRAFOPOULOS D, RODRÍGUEZ-COBO L, et al. Engineering aspheric liquid crystal lenses by using the transmission electrode technique [J]. Crystals, 2020, 10(9): 835. doi: 10.3390/cryst10090835http://dx.doi.org/10.3390/cryst10090835
ALGORRI J F, MORAWIAK P, ZOGRAFOPOULOS D C, et al. Multifunctional light beam control device by stimuli-responsive liquid crystal micro-grating structures [J]. Scientific Reports, 2020, 10(1): 13806. doi: 10.1038/s41598-020-70783-8http://dx.doi.org/10.1038/s41598-020-70783-8
STEVENS J, GALSTIAN T. Electrically tunable liquid crystal lens with a serpentine electrode design [J]. Optics Letters, 2022, 47(4): 910-912. doi: 10.1364/ol.447853http://dx.doi.org/10.1364/ol.447853
BEECKMAN J, YANG T H, NYS I, et al. Multi-electrode tunable liquid crystal lenses with one lithography step [J]. Optics Letters, 2018, 43(2): 271-274. doi: 10.1364/ol.43.000271http://dx.doi.org/10.1364/ol.43.000271
冯文斌,刘志强,徐律涵,等.一种高性能液晶透镜的设计方法[J].光学学报,2023,43(2):0223001. doi: 10.3788/AOS221137http://dx.doi.org/10.3788/AOS221137
FENG W B, LIU Z Q, XU L H, et al. Design method for high-performance liquid crystal lens [J]. Acta Optica Sinica, 2023, 43(2): 0223001. (in Chinese). doi: 10.3788/AOS221137http://dx.doi.org/10.3788/AOS221137
FENG W B, LIU Z Q, LIU H, et al. Design of tunable liquid crystal lenses with a parabolic phase profile [J]. Crystals, 2023, 13(1): 8. doi: 10.3390/cryst13010008http://dx.doi.org/10.3390/cryst13010008
白一晨.单目及双目复合视觉的深度测量技术[D].成都:电子科技大学,2019.
BAI Y C. Depth measurement technology with monocular and binocular composite system [D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese)
杨佳文,黄巧林,韩友民.Zernike多项式在拟合光学表面面形中的应用及仿真[J].航天返回与遥感,2010,31(5):49-55. doi: 10.3969/j.issn.1009-8518.2010.05.009http://dx.doi.org/10.3969/j.issn.1009-8518.2010.05.009
YANG J W, HUANG Q L, HAN Y M. Application and simulation in fitting optical surface with Zernike polynomial [J]. Spacecraft Recovery & Remote Sensing, 2010, 31(5): 49-55. (in Chinese). doi: 10.3969/j.issn.1009-8518.2010.05.009http://dx.doi.org/10.3969/j.issn.1009-8518.2010.05.009
0
浏览量
136
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构