1.长春工业大学 化学工程学院, 吉林 长春 130012
2.梧州学院 广西机器视觉与智能控制重点实验室, 广西 梧州 543002
[ "苏和平(2000—),男,河南驻马店人,硕士研究生,2022年于长春工业大学获得学士学位,主要从事薄膜传感器、有机薄膜晶体管方面的研究。E-mail:2420003182@qq.com" ]
[ "李占国(1979—),男,吉林长春人,博士,教授,2010年于长春理工大学获得博士学位,主要从事光电子系统设计及技术方面的研究。E-mail:lzhg000@ 126.com" ]
[ "王丽娟(1975—),女,黑龙江集贤人,博士,教授,2008年于长春理工大学获得博士学位,主要从事有机薄膜晶体管、太阳能电池、新型显示技术等方面的研究。E-mail:wlj15@163.com" ]
扫 描 看 全 文
苏和平, 王晨雪, 朱阳阳, 等. 石墨烯压力传感器在可穿戴电子器件中的研究进展[J]. 液晶与显示, 2023,38(8):1062-1074.
SU He-ping, WANG Chen-xue, ZHU Yang-yang, et al. Research progress of graphene pressure sensors in wearable electronic devices[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1062-1074.
苏和平, 王晨雪, 朱阳阳, 等. 石墨烯压力传感器在可穿戴电子器件中的研究进展[J]. 液晶与显示, 2023,38(8):1062-1074. DOI: 10.37188/CJLCD.2023-0099.
SU He-ping, WANG Chen-xue, ZHU Yang-yang, et al. Research progress of graphene pressure sensors in wearable electronic devices[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1062-1074. DOI: 10.37188/CJLCD.2023-0099.
本文介绍了石墨烯材料的制备、石墨烯压力传感器的性能以及在可穿戴电子器件中的应用前景。总结了石墨烯材料的制备方法,阐述了石墨烯压力传感器在机械、导电性能、显示方面的优势。研究了在压力传感器的结构中加入石墨烯、石墨烯衍生物或石墨烯复合材料提高传感器性能的策略。介绍了石墨烯压力传感器在可穿戴电子器件中的应用,包括人体行为和健康检测、人机界面、电子皮肤以及可穿戴显示器方面的优秀性能和前景。
This paper introduces the preparation of graphene material, the performance of graphene pressure sensor and its application prospect in wearable electronic devices. Firstly, the preparation method of graphene material is summarized, and the advantages of graphene pressure sensor in mechanical, conductive property and display are expounded. Then, the strategies of adding graphene, graphene derivatives or graphene composites to the structure of the pressure sensor to improve the performance of the sensor are investigated. Finally, it introduces the application of graphene pressure sensor in wearable electronic devices, including human behavior and health detection, human-computer interface, electronic skin and wearable display, excellent performance and prospect.
石墨烯压力传感器性能应用可穿戴电子器件
graphenepressure sensorperformanceapplicationswearable electronics
CHANG W Y, CHEN C C, CHANG C C, et al. An enhanced sensing application based on a flexible projected capacitive-sensing mattress [J]. Sensors, 2014, 14(4): 6922-6937. doi: 10.3390/s140406922http://dx.doi.org/10.3390/s140406922
JANG J, OH B, JO S, et al. Human-interactive, active-matrix displays for visualization of tactile pressures [J]. Advanced Materials Technologies, 2019, 4(7): 1900082. doi: 10.1002/admt.201900082http://dx.doi.org/10.1002/admt.201900082
CHANG W Y, FANG T H, YEH S H, et al. Flexible electronics sensors for tactile multi-touching [J]. Sensors, 2009, 9(2): 1188-1203. doi: 10.3390/s9021188http://dx.doi.org/10.3390/s9021188
XU F L, LI X Y, SHI Y, et al. Recent developments for flexible pressure sensors: a review [J]. Micromachines, 2018, 9(11): 580. doi: 10.3390/mi9110580http://dx.doi.org/10.3390/mi9110580
ZANG Y P, ZHANG F J, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications [J]. Materials Horizons, 2015, 2(2): 140-156. doi: 10.1039/c4mh00147hhttp://dx.doi.org/10.1039/c4mh00147h
CHEN S J, ZHUO B G, GUO X J. Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity and durable sensing over wide pressure range [J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20364-20370. doi: 10.1021/acsami.6b05177http://dx.doi.org/10.1021/acsami.6b05177
林述锋,沈田子.氧化石墨烯液晶的光电特性与显示应用[J].液晶与显示,2020,35(7):733-740. doi: 10.37188/YJYXS20203507.0733http://dx.doi.org/10.37188/YJYXS20203507.0733
LIN S F, SHEN T Z. Electrical-optical properties of Graphene oxide liquid crystal and its applications [J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 733-740. doi: 10.37188/YJYXS20203507.0733http://dx.doi.org/10.37188/YJYXS20203507.0733
LI J, LI W B, LIU J, et al. Green preparation of graphene-based plantar pressure sensor [J]. Journal of Materials Science: Materials in Electronics, 2023, 34(7): 680. doi: 10.1007/s10854-023-09987-3http://dx.doi.org/10.1007/s10854-023-09987-3
ZHU Y S, CAI H B, DING H Y, et al. Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane [J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6195-6200. doi: 10.1021/acsami.8b17085http://dx.doi.org/10.1021/acsami.8b17085
ZHU Y W, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science, 2011, 332(6037): 1537-1541. doi: 10.1126/science.1200770http://dx.doi.org/10.1126/science.1200770
LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388. doi: 10.1126/science.1157996http://dx.doi.org/10.1126/science.1157996
CHEN W Y, HUANG Y J. Advanced three-dimensional graphene-based piezoresistive sensors in wearable devices [J]. Journal of Physics: Conference Series, 2022, 2174: 012019. doi: 10.1088/1742-6596/2174/1/012019http://dx.doi.org/10.1088/1742-6596/2174/1/012019
GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191. doi: 10.1038/nmat1849http://dx.doi.org/10.1038/nmat1849
PENG Y X, ZHOU J Z, SONG X, et al. A flexible pressure sensor with ink printed porous graphene for continuous cardiovascular status monitoring [J]. Sensors, 2021, 21(2): 485. doi: 10.3390/s21020485http://dx.doi.org/10.3390/s21020485
TRAN A V, ZHANG X M, ZHU B L. The development of a new piezoresistive pressure sensor for low pressures [J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6487-6496. doi: 10.1109/tie.2017.2784341http://dx.doi.org/10.1109/tie.2017.2784341
ASGHAR W, LI F L, ZHOU Y L, et al. Piezocapacitive flexible E-skin pressure sensors having magnetically grown microstructures [J]. Advanced Materials Technologies, 2020, 5(2): 1900934. doi: 10.1002/admt.201900934http://dx.doi.org/10.1002/admt.201900934
HOSSEINI E S, MANJAKKAL L, SHAKTHIVEL D, et al. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor [J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9008-9016. doi: 10.1021/acsami.9b21052http://dx.doi.org/10.1021/acsami.9b21052
AI Y F, HSU T H, WU D C, et al. An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@reduced graphene-oxide core-shell nanoparticles [J]. Journal of Materials Chemistry C, 2018, 6(20): 5514-5520. doi: 10.1039/c8tc01153bhttp://dx.doi.org/10.1039/c8tc01153b
LIU W J, LIU N S, YUE Y, et al. A flexible and highly sensitive pressure sensor based on elastic carbon foam [J]. Journal of Materials Chemistry C, 2018, 6(6): 1451-1458. doi: 10.1039/c7tc05228fhttp://dx.doi.org/10.1039/c7tc05228f
YUSOF N, BAIS B, YUNAS J, et al. Fabrication of suspended PMMA-graphene membrane for high sensitivity LC-MEMS pressure sensor [J]. Membranes, 2021, 11(12): 996. doi: 10.3390/membranes11120996http://dx.doi.org/10.3390/membranes11120996
顾健,何云凤,张小平,等.石墨烯材料制备技术研究进展[J].材料科学,2016,6(6):346-360.
GU J, HE Y F, ZHANG X P, et al. Research progress in preparation technology of graphene [J]. Material Sciences, 2016, 6(6): 346-360.
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896http://dx.doi.org/10.1126/science.1102896
QIAO Y C, LI X S, HIRTZ T, et al. Graphene-based wearable sensors [J]. Nanoscale, 2019, 11(41): 18923-18945. doi: 10.1039/c9nr05532khttp://dx.doi.org/10.1039/c9nr05532k
CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 80-84. doi: 10.1038/nature26154http://dx.doi.org/10.1038/nature26154
CIESIELSKI A, HAAR S, ALIPRANDI A, et al. Modifying the size of ultrasound-induced liquid-phase exfoliated graphene: from nanosheets to nanodots [J]. ACS Nano, 2016, 10(12): 10768-10777. doi: 10.1021/acsnano.6b03823http://dx.doi.org/10.1021/acsnano.6b03823
SILVA A A, PINHEIRO R A, RODRIGUES A C, et al. Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor [J]. Applied Surface Science, 2018, 446: 201-208. doi: 10.1016/j.apsusc.2018.01.214http://dx.doi.org/10.1016/j.apsusc.2018.01.214
ZHAO H M, LIN Y C, YEH C H, et al. Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations [J]. ACS Nano, 2014, 8(10): 10766-10773. doi: 10.1021/nn5044959http://dx.doi.org/10.1021/nn5044959
XU X Z, ZHANG Z H, DONG J C, et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil [J]. Science Bulletin, 2017, 62(15): 1074-1080. doi: 10.1016/j.scib.2017.07.005http://dx.doi.org/10.1016/j.scib.2017.07.005
YU Q, JIANG J C, JIANG L Y, et al. Advances in green synthesis and applications of graphene [J]. Nano Research, 2021, 14(11): 3724-3743. doi: 10.1007/s12274-021-3336-9http://dx.doi.org/10.1007/s12274-021-3336-9
XIA S, WANG M, GAO G H. Preparation and application of graphene-based wearable sensors [J]. Nano Research, 2022, 15(11): 9850-9865. doi: 10.1007/s12274-022-4272-zhttp://dx.doi.org/10.1007/s12274-022-4272-z
NAG M, KUMAR A, PRATAP B. A novel graphene pressure sensor with zig-zag shaped piezoresistors for maximum strain coverage for enhancing the sensitivity of the pressure sensor [J]. International Journal for Simulation and Multidisciplinary Design Optimization, 2021, 12: 14. doi: 10.1051/smdo/2021013http://dx.doi.org/10.1051/smdo/2021013
TAO L Q, ZHANG K N, TIAN H, et al. Graphene-paper pressure sensor for detecting human motions [J]. ACS Nano, 2017, 11(9): 8790-8795. doi: 10.1021/acsnano.7b02826http://dx.doi.org/10.1021/acsnano.7b02826
LI K, YANG W Y, YI M, et al. Graphene-based pressure sensor and strain sensor for detecting human activities [J]. Smart Materials and Structures, 2021, 30(8): 085027. doi: 10.1088/1361-665x/ac0d8bhttp://dx.doi.org/10.1088/1361-665x/ac0d8b
LIU S B, WU X, ZHANG D D, et al. Ultrafast dynamic pressure sensors based on graphene hybrid structure [J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24148-24154. doi: 10.1021/acsami.7b07311http://dx.doi.org/10.1021/acsami.7b07311
LI Y, XIAO Y F, LIANG S, et al. Graphene composite structure based optical absorption pressure sensor [J]. Optics Express, 2022, 30(15): 26865-26874. doi: 10.1364/oe.462986http://dx.doi.org/10.1364/oe.462986
YANG Y, SHEN H L, YANG Z Y, et al. Highly flexible and sensitive wearable strain and pressure sensor based on porous graphene paper for human motion [J]. Journal of Materials Science: Materials in Electronics, 2022, 33(22): 17637-17648. doi: 10.1007/s10854-022-08627-6http://dx.doi.org/10.1007/s10854-022-08627-6
LIU Y, ZHANG Y, LIN X, et al. Improved high-yield PMMA/graphene pressure sensor and sealed gas effect analysis [J]. Micromachines, 2020, 11(9): 786. doi: 10.3390/mi11090786http://dx.doi.org/10.3390/mi11090786
IL AHN S, KIM Y W, LEE S E, et al. Graphene-coated microballs for a hyper-sensitive vacuum sensor [J]. Scientific Reports, 2019, 9(1): 4910. doi: 10.1038/s41598-019-41413-9http://dx.doi.org/10.1038/s41598-019-41413-9
PYO S, LEE J, BAE K, et al. Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications [J]. Advanced Materials, 2021, 33(47): 2005902. doi: 10.1002/adma.202005902http://dx.doi.org/10.1002/adma.202005902
PANG Y, ZHANG K N, YANG Z, et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity [J]. ACS Nano, 2018, 12(3): 2346-2354. doi: 10.1021/acsnano.7b07613http://dx.doi.org/10.1021/acsnano.7b07613
YANG C X, LIU W J, LIU N S, et al. Graphene aerogel broken to fragments for a piezoresistive pressure sensor with a higher sensitivity [J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33165-33172. doi: 10.1021/acsami.9b12055http://dx.doi.org/10.1021/acsami.9b12055
YANG L, LIU Y, FILIPE C D M, et al. Development of a highly sensitive, broad-range hierarchically structured reduced graphene oxide/polyHIPE foam for pressure sensing [J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4318-4327. doi: 10.1021/acsami.8b17020http://dx.doi.org/10.1021/acsami.8b17020
BIJENDER, KUMAR A. Recent progress in the fabrication and applications of flexible capacitive and resistive pressure sensors [J]. Sensors and Actuators A: Physical, 2022, 344: 113770. doi: 10.1016/j.sna.2022.113770http://dx.doi.org/10.1016/j.sna.2022.113770
BAE G Y, PAK S W, KIM D, et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array [J]. Advanced Materials, 2016, 28(26): 5300-5306. doi: 10.1002/adma.201600408http://dx.doi.org/10.1002/adma.201600408
CUI T R, YANG L, HAN X L, et al. A low-cost, portable, and wireless in-shoe system based on a flexible porous graphene pressure sensor [J]. Materials, 2021, 14(21): 6475. doi: 10.3390/ma14216475http://dx.doi.org/10.3390/ma14216475
REN X C, LIU X Y, SU X, et al. Design and optimization of a pressure sensor based on serpentine-shaped graphene piezoresistors for measuring low pressure [J]. Sensors, 2022, 22(13): 4937. doi: 10.3390/s22134937http://dx.doi.org/10.3390/s22134937
SHIRHATTI V, NUTHALAPATI S, KEDAMBAIMOOLE V, et al. Broad-range fast response vacuum pressure sensors based on a graphene nanocomposite with hollow α-Fe2O3 microspheres [J]. ACS Applied Electronic Materials, 2020, 2(8): 2429-2439. doi: 10.1021/acsaelm.0c00387http://dx.doi.org/10.1021/acsaelm.0c00387
YANG N, LIU H L, YIN X Y, et al. Flexible pressure sensor decorated with MXene and reduced graphene oxide composites for motion detection, information transmission, and pressure sensing performance [J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45978-45987. doi: 10.1021/acsami.2c16028http://dx.doi.org/10.1021/acsami.2c16028
REN Z Q, ZHANG H, LIU N S, et al. Self-powered 2D nanofluidic graphene pressure sensor with serosa-mimetic structure [J]. EcoMat, 2023, 5(3): e12299. doi: 10.1002/eom2.12299http://dx.doi.org/10.1002/eom2.12299
KANG K, PARK J, KIM K, et al. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications [J]. Nano Research, 2021, 14(9): 3096-3111. doi: 10.1007/s12274-021-3490-0http://dx.doi.org/10.1007/s12274-021-3490-0
JAYATHILAKA W A D M, QI K, QIN Y L, et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors [J]. Advanced Materials, 2019, 31(7): 1805921. doi: 10.1002/adma.201805921http://dx.doi.org/10.1002/adma.201805921
ZENG Y Q, LI T, YAO Y G, et al. Thermally conductive reduced graphene oxide thin films for extreme temperature sensors [J]. Advanced Functional Materials, 2019, 29(27): 1901388.
AFROJ S, TAN S R, ABDELKADER A M, et al. Highly conductive, scalable, and machine washable graphene-based E-textiles for multifunctional wearable electronic applications [J]. Advanced Functional Materials, 2020, 30(23): 2000293. doi: 10.1002/adfm.202000293http://dx.doi.org/10.1002/adfm.202000293
HUANG T, HE P, WANG R R, et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors [J]. Advanced Functional Materials, 2019, 29(45) 1903732. doi: 10.1002/adfm.201903732http://dx.doi.org/10.1002/adfm.201903732
SUN S B, LIU Y Q, CHANG X T, et al. A wearable, waterproof, and highly sensitive strain sensor based on three-dimensional graphene/carbon black/Ni sponge for wirelessly monitoring human motions [J]. Journal of Materials Chemistry C, 2020, 8(6): 2074-2085. doi: 10.1039/c9tc04537fhttp://dx.doi.org/10.1039/c9tc04537f
XIE Z H, LI H, MI H Y, et al. Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications [J]. Journal of Materials Chemistry C, 2021, 9(31): 10127-10137. doi: 10.1039/d1tc02599fhttp://dx.doi.org/10.1039/d1tc02599f
ZOU Q, LI S H, XUE T, et al. Highly sensitive ionic pressure sensor with broad sensing range based on interlaced ridge-like microstructure [J]. Sensors and Actuators A: Physical, 2020, 313: 112173. doi: 10.1016/j.sna.2020.112173http://dx.doi.org/10.1016/j.sna.2020.112173
HERREN B, WEBSTER V, DAVIDSON E, et al. PDMS sponges with embedded carbon nanotubes as piezoresistive sensors for human motion detection [J]. Nanomaterials, 2021, 11(7): 1740. doi: 10.3390/nano11071740http://dx.doi.org/10.3390/nano11071740
HUANG L T, CHEN J W, XU Y Q, et al. Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles [J]. Applied Surface Science, 2021, 548: 149268. doi: 10.1016/j.apsusc.2021.149268http://dx.doi.org/10.1016/j.apsusc.2021.149268
HAN Z Y, LI H F, XIAO J L, et al. Ultralow-cost, highly sensitive, and flexible pressure sensors based on carbon black and airlaid paper for wearable electronics [J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33370-33379. doi: 10.1021/acsami.9b12929http://dx.doi.org/10.1021/acsami.9b12929
CHEN X Y, LIU H, ZHENG Y J, et al. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor [J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42594-42606. doi: 10.1021/acsami.9b14688http://dx.doi.org/10.1021/acsami.9b14688
ZHAO T T, LI T K, CHEN L L, et al. Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials [J]. ACS Applied Materials & Interfaces, 2019, 11(32): 29466-29473. doi: 10.1021/acsami.9b09265http://dx.doi.org/10.1021/acsami.9b09265
DAN L, SHI S, CHUNG H J, et al. Porous polydimethylsiloxane-silver nanowire devices for wearable pressure sensors [J]. ACS Applied Nano Materials, 2019, 2(8): 4869-4878. doi: 10.1021/acsanm.9b00807http://dx.doi.org/10.1021/acsanm.9b00807
WANG J, TENJIMBAYASHI M, TOKURA Y, et al. Bionic fish-scale surface structures fabricated via air/water interface for flexible and ultrasensitive pressure sensors [J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30689-30697. doi: 10.1021/acsami.8b08933http://dx.doi.org/10.1021/acsami.8b08933
TEWARI A, GANDLA S, BOHM S, et al. Highly exfoliated MWNT-rGO ink-wrapped polyurethane foam for piezoresistive pressure sensor applications [J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5185-5195. doi: 10.1021/acsami.7b15252http://dx.doi.org/10.1021/acsami.7b15252
CAI G M, YANG M Y, XU Z L, et al. Flexible and wearable strain sensing fabrics [J]. Chemical Engineering Journal, 2017, 325: 396-403. doi: 10.1016/j.cej.2017.05.091http://dx.doi.org/10.1016/j.cej.2017.05.091
HU X R, HUANG T, LIU Z D, et al. Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors [J]. Journal of Materials Chemistry A [J]. 2020, 8(29): 14778-14787. doi: 10.1039/d0ta04915hhttp://dx.doi.org/10.1039/d0ta04915h
HAN W P, WU Y J, GONG H, et al. Reliable sensors based on graphene textile with negative resistance variation in three dimensions [J]. Nano Research, 2021, 14(8): 2810-2818. doi: 10.1007/s12274-021-3291-5http://dx.doi.org/10.1007/s12274-021-3291-5
JUNG S, KIM J H, KIM J, et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces [J]. Advanced Materials, 2014, 26(28): 4825-4830. doi: 10.1002/adma.201401364http://dx.doi.org/10.1002/adma.201401364
TANG Y J, ZHOU H, SUN X P, et al. Triboelectric touch-free screen sensor for noncontact gesture recognizing [J]. Advanced Functional Materials, 2020, 30(5): 1907893. doi: 10.1002/adfm.201907893http://dx.doi.org/10.1002/adfm.201907893
ZHANG B S, TANG Y J, DAI R R, et al. Breath-based human-machine interaction system using triboelectric nanogenerator [J]. Nano Energy, 2019, 64: 103953. doi: 10.1016/j.nanoen.2019.103953http://dx.doi.org/10.1016/j.nanoen.2019.103953
WAN Y B, WANG Y, GUO C F. Recent progresses on flexible tactile sensors [J]. Materials Today Physics, 2017, 1: 61-73. doi: 10.1016/j.mtphys.2017.06.002http://dx.doi.org/10.1016/j.mtphys.2017.06.002
GUO Y, GUO Z Y, ZHONG M J, et al. A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing [J]. Small, 2018, 14(44): 1803018. doi: 10.1002/smll.201803018http://dx.doi.org/10.1002/smll.201803018
CHANG T H, TIAN Y, LI C S, et al. Stretchable graphene pressure sensors with Shar-Pei-Like hierarchical wrinkles for collision-aware surgical robotics [J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10226-10236. doi: 10.1021/acsami.9b00166http://dx.doi.org/10.1021/acsami.9b00166
MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers [J]. Nature Materials, 2010, 9(10): 859-864. doi: 10.1038/nmat2834http://dx.doi.org/10.1038/nmat2834
LOU Z, CHEN S, WANG L L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring [J]. Nano Energy, 2016, 23: 7-14. doi: 10.1016/j.nanoen.2016.02.053http://dx.doi.org/10.1016/j.nanoen.2016.02.053
KIM D H, LU N S, MA R, et al. Epidermal electronics [J]. Science, 2011, 333(6044): 838-843. doi: 10.1126/science.1206157http://dx.doi.org/10.1126/science.1206157
ZHANG Z T, WANG W C, JIANG Y W, et al. High-brightness all-polymer stretchable LED with charge-trapping dilution [J]. Nature, 2022, 603(7902): 624-630. doi: 10.1038/s41586-022-04400-1http://dx.doi.org/10.1038/s41586-022-04400-1
0
浏览量
91
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构