1.四川大学 电子信息学院, 四川 成都 610065
[ "吴周杰(1993—),男,重庆人,博士,副研究员,2021年于四川大学获得博士学位,主要从事计算光学成像、光测力学等方面的研究。E-mail:zhoujiewu@ scu.edu.cn" ]
[ "张启灿(1974—),男,云南曲靖人,博士,教授,2005年于四川大学获得博士学位,主要从事光学三维传感、动态过程三维测量和相位展开等方面的研究。E-mail:zqc@scu.edu.cn" ]
扫 描 看 全 文
吴周杰, 张启灿. 基于条纹投影的三维形貌与形变测量技术研究进展[J]. 液晶与显示, 2023,38(6):730-747.
WU Zhou-jie, ZHANG Qi-can. Recent progress on 3D shape and deformation measurement based on fringe projection[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(6):730-747.
吴周杰, 张启灿. 基于条纹投影的三维形貌与形变测量技术研究进展[J]. 液晶与显示, 2023,38(6):730-747. DOI: 10.37188/CJLCD.2023-0082.
WU Zhou-jie, ZHANG Qi-can. Recent progress on 3D shape and deformation measurement based on fringe projection[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(6):730-747. DOI: 10.37188/CJLCD.2023-0082.
基于条纹投影的三维形貌测量技术,已经在提升测量精度、提高测量速度、扩大测量景深、增加测量场景适应性等方面被进行了大量研究。但由于条纹投影技术本身的原理限制,仅利用传统条纹投影方法难于实现准确的对应点匹配。而依赖于对应点追踪的形变测量和应变分析可以进一步分析物体的运动状态、材料特性以及结构力学参数,在运动仿生学、材料力学、结构力学等诸多领域中起着不可或缺的作用。本文回顾了近年来新发展出的一系列基于条纹投影的三维形貌与形变测量技术,论述了学者们如何在条纹投影系统上一步步实现从简单刚体位移的测量到复杂、精细结构的形变测量和应变分析。分析了此类技术在测量完整度、分辨率以及计算效率上相比于已有形变测量技术的优势,给出了此技术所面临的挑战和潜在发展动向。
3D shape measurement based on fringe projection profilometry (FPP) has been extensively studied in terms of improving measurement accuracy, accelerating the measurement speed, expanding the measurement depth, and increasing the adaptability of the measurement scene. However, due to the principle limitation of FPP, it is difficult to achieve accurate matching of corresponding points using the traditional FPP method. The deformation measurement and strain analysis relying on the corresponding point tracking can be further performed to analyze the motion state of the object, material properties and structural mechanics parameters, which plays an indispensable role in many fields such as motion bionics, material mechanics, and structural mechanics. Therefore, this paper reviews a series of newly developed 3D shape and deformation measurement techniques based on FPP in recent years, and discusses how scholars have gradually realized the measurement from simple rigid body displacement measurement to complex and fine structure deformation measurement and strain analysis based on a FPP system. Finally, the advantages of this technique in measurement integrity, resolution and computational efficiency compared with the existing deformation measurement technique are analyzed, and the challenges and potential development trends of this technique are given.
三维测量条纹投影数字图像相关三维形貌测量三维形变测量应变分析
three-dimensional measurementfringe projectiondigital image correlationdynamic three-dimensional shape measurementthree-dimensional deformation measurementstrain analysis
ZHONG R Y, XU X, KLOTZ E, et al. Intelligent manufacturing in the context of industry 4.0: a review [J]. Engineering, 2017, 3(5): 616-630. doi: 10.1016/j.eng.2017.05.015http://dx.doi.org/10.1016/j.eng.2017.05.015
NILSSON E, NILSSON A C. Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores [J]. Journal of Sound and Vibration, 2002, 251(3): 409-430. doi: 10.1006/jsvi.2001.4007http://dx.doi.org/10.1006/jsvi.2001.4007
YOUNG J, WALKER S M, BOMPHREY R J, et al. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency [J]. Science, 2009, 325(5947): 1549-1552. doi: 10.1126/science.1175928http://dx.doi.org/10.1126/science.1175928
LI Q Q, WU L J, HU L, et al. Axial compression performance of a bamboo-inspired porous lattice structure [J]. Thin-Walled Structures, 2022, 180: 109803. doi: 10.1016/j.tws.2022.109803http://dx.doi.org/10.1016/j.tws.2022.109803
HEIM F M, DASPIT J T, HOLZMOND O B, et al. Analysis of tow architecture variability in biaxially braided composite tubes [J]. Composites Part B: Engineering, 2020, 190: 107938. doi: 10.1016/j.compositesb.2020.107938http://dx.doi.org/10.1016/j.compositesb.2020.107938
GORTHI S S, RASTOGI P. Fringe projection techniques: whither we are? [J]. Optics and Lasers in Engineering, 2010, 48(2): 133-140. doi: 10.1016/j.optlaseng.2009.09.001http://dx.doi.org/10.1016/j.optlaseng.2009.09.001
GENG J. Structured-light 3D surface imaging: a tutorial [J]. Advances in Optics and Photonics, 2011, 3(2): 128-160. doi: 10.1364/aop.3.000128http://dx.doi.org/10.1364/aop.3.000128
XU J, ZHANG S. Status, challenges, and future perspectives of fringe projection profilometry [J]. Optics and Lasers in Engineering, 2020, 135: 106193. doi: 10.1016/j.optlaseng.2020.106193http://dx.doi.org/10.1016/j.optlaseng.2020.106193
TAKEDA M, MUTOH K. Fourier transform profilometry for the automatic measurement of 3-D object shapes [J]. Applied Optics, 1983, 22(24): 3977-3982. doi: 10.1364/ao.22.003977http://dx.doi.org/10.1364/ao.22.003977
SU X Y, CHEN W J. Fourier transform profilometry: a review [J]. Optics and Lasers in Engineering, 2001, 35(5): 263-284. doi: 10.1016/s0143-8166(01)00023-9http://dx.doi.org/10.1016/s0143-8166(01)00023-9
SU X Y, ZHANG Q C. Dynamic 3-D shape measurement method: a review [J]. Optics and Lasers in Engineering, 2010, 48(2): 191-204. doi: 10.1016/j.optlaseng.2009.03.012http://dx.doi.org/10.1016/j.optlaseng.2009.03.012
ZUO C, FENG S J, HUANG L, et al. Phase shifting algorithms for fringe projection profilometry: a review [J]. Optics and Lasers in Engineering, 2018, 109: 23-59. doi: 10.1016/j.optlaseng.2018.04.019http://dx.doi.org/10.1016/j.optlaseng.2018.04.019
WU Z J, GUO W B, ZHANG Q C. Two-frequency phase-shifting method vs. Gray-coded-based method in dynamic fringe projection profilometry: a comparative review [J]. Optics and Lasers in Engineering, 2022, 153: 106995. doi: 10.1016/j.optlaseng.2022.106995http://dx.doi.org/10.1016/j.optlaseng.2022.106995
WANG Y J, LAUGHNER J I, EFIMOV I R, et al. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique [J]. Optics Express, 2013, 21(5): 5822-5832. doi: 10.1364/oe.21.005822http://dx.doi.org/10.1364/oe.21.005822
ZUO C, CHEN Q, GU G H, et al. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection [J]. Optics and Lasers in Engineering, 2013, 51(8): 953-960. doi: 10.1016/j.optlaseng.2013.02.012http://dx.doi.org/10.1016/j.optlaseng.2013.02.012
HEIST S, LUTZKE P, SCHMIDT I, et al. High-speed three-dimensional shape measurement using GOBO projection [J]. Optics and Lasers in Engineering, 2016, 87: 90-96. doi: 10.1016/j.optlaseng.2016.02.017http://dx.doi.org/10.1016/j.optlaseng.2016.02.017
WU Z J, GUO W B, ZHANG Q C. High-speed three-dimensional shape measurement based on shifting Gray-code light [J]. Optics Express, 2019, 27(16): 22631-22644. doi: 10.1364/oe.27.022631http://dx.doi.org/10.1364/oe.27.022631
JIANG C, KILCULLEN P, LAI Y M, et al. High-speed dual-view band-limited illumination profilometry using temporally interlaced acquisition [J]. Photonics Research, 2020, 8(11): 1808-1817. doi: 10.1364/prj.399492http://dx.doi.org/10.1364/prj.399492
WU Z J, GUO W B, LI Y Y, et al. High-speed and high-efficiency three-dimensional shape measurement based on Gray-coded light [J]. Photonics Research, 2020, 8(6): 819-829. doi: 10.1364/prj.389076http://dx.doi.org/10.1364/prj.389076
WU Z J, GUO W B, ZHANG Q C, et al. Time-overlapping structured-light projection: high performance on 3D shape measurement for complex dynamic scenes [J]. Optics Express, 2022, 30(13): 22467-22486. doi: 10.1364/oe.460088http://dx.doi.org/10.1364/oe.460088
PAN B, QIAN K M, XIE H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review [J]. Measurement Science and Technology, 2009, 20(6): 062001. doi: 10.1088/0957-0233/20/6/062001http://dx.doi.org/10.1088/0957-0233/20/6/062001
SCHREIER H, ORTEU J J, SUTTON M A. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications [M]. New York: Springer, 2009. doi: 10.1007/978-0-387-78747-3http://dx.doi.org/10.1007/978-0-387-78747-3
PAN B. Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals [J]. Measurement Science and Technology, 2018, 29(8): 082001. doi: 10.1088/1361-6501/aac55bhttp://dx.doi.org/10.1088/1361-6501/aac55b
ORTEU J J. 3-D computer vision in experimental mechanics [J]. Optics and Lasers in Engineering, 2009, 47(3/4): 282-291. doi: 10.1016/j.optlaseng.2007.11.009http://dx.doi.org/10.1016/j.optlaseng.2007.11.009
THIRUSELVAM N I, SUBRAMANIAN S J. Feature-assisted stereo correlation [J]. Strain, 2019, 55(5): e12315. doi: 10.1111/str.12315http://dx.doi.org/10.1111/str.12315
WU Z J, GUO W B, CHEN Z D, et al. Three-dimensional shape and deformation measurement on complex structure parts [J]. Scientific Reports, 2022, 12(1): 7760. doi: 10.1038/s41598-022-11702-xhttp://dx.doi.org/10.1038/s41598-022-11702-x
TAKEDA M, INA H, KOBAYASHI S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry [J]. Journal of the Optical Society of America, 1982, 72(1): 156-160. doi: 10.1364/josa.72.000156http://dx.doi.org/10.1364/josa.72.000156
SRINIVASAN V, LIU H C, HALIOUA M. Automated phase-measuring profilometry of 3-D diffuse objects [J]. Applied Optics, 1984, 23(18): 3105-3108. doi: 10.1364/ao.23.003105http://dx.doi.org/10.1364/ao.23.003105
HALIOUA M, LIU H C. Optical three-dimensional sensing by phase measuring profilometry [J]. Optics and Lasers in Engineering, 1989, 11(3): 185-215. doi: 10.1016/0143-8166(89)90031-6http://dx.doi.org/10.1016/0143-8166(89)90031-6
ZUO C, HUANG L, ZHANG M L, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review [J]. Optics and Lasers in Engineering, 2016, 85: 84-103. doi: 10.1016/j.optlaseng.2016.04.022http://dx.doi.org/10.1016/j.optlaseng.2016.04.022
张启灿,吴周杰.基于格雷码图案投影的结构光三维成像技术[J].红外与激光工程,2020,49(3):0303004. doi: 10.3788/irla202049.0303004http://dx.doi.org/10.3788/irla202049.0303004
ZHANG Q C, WU Z J. Three-dimensional imaging technique based on Gray-coded structured illumination [J]. Infrared and Laser Engineering, 2020, 49(3): 0303004. (in Chinese). doi: 10.3788/irla202049.0303004http://dx.doi.org/10.3788/irla202049.0303004
LEI S Y, ZHANG S. Flexible 3-D shape measurement using projector defocusing [J]. Optics Letters, 2009, 34(20): 3080-3082. doi: 10.1364/ol.34.003080http://dx.doi.org/10.1364/ol.34.003080
ZHANG S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques [J]. Optics and Lasers in Engineering, 2010, 48(2): 149-158. doi: 10.1016/j.optlaseng.2009.03.008http://dx.doi.org/10.1016/j.optlaseng.2009.03.008
ZHANG S. High-speed 3D shape measurement with structured light methods: a review [J]. Optics and Lasers in Engineering, 2018, 106: 119-131. doi: 10.1016/j.optlaseng.2018.02.017http://dx.doi.org/10.1016/j.optlaseng.2018.02.017
WANG Z Y, KIEU H, NGUYEN H, et al. Digital image correlation in experimental mechanics and image registration in computer vision: similarities, differences and complements [J]. Optics and Lasers in Engineering, 2015, 65: 18-27. doi: 10.1016/j.optlaseng.2014.04.002http://dx.doi.org/10.1016/j.optlaseng.2014.04.002
LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/b:visi.0000029664.99615.94http://dx.doi.org/10.1023/b:visi.0000029664.99615.94
PAN B, XIE H M, WANG Z Y. Equivalence of digital image correlation criteria for pattern matching [J]. Applied Optics, 2010, 49(28): 5501-5509. doi: 10.1364/ao.49.005501http://dx.doi.org/10.1364/ao.49.005501
PAN B, WANG Z Y, LU Z X. Genuine full-field deformation measurement of an object with complex shape using reliability-guided digital image correlation [J]. Optics Express, 2010, 18(2): 1011-1023. doi: 10.1364/oe.18.001011http://dx.doi.org/10.1364/oe.18.001011
BRUCK H A, MCNEILL S R, SUTTON M A, et al. Digital image correlation using Newton-Raphson method of partial differential correction [J]. Experimental Mechanics, 1989, 29(3): 261-267. doi: 10.1007/bf02321405http://dx.doi.org/10.1007/bf02321405
ZHOU Y H, PAN B, CHEN Y Q. Large deformation measurement using digital image correlation: a fully automated approach [J]. Applied Optics, 2012, 51(31): 7674-7683. doi: 10.1364/ao.51.007674http://dx.doi.org/10.1364/ao.51.007674
PAN B, LI K, TONG W. Fast, robust and accurate digital image correlation calculation without redundant computations [J]. Experimental Mechanics, 2013, 53(7): 1277-1289. doi: 10.1007/s11340-013-9717-6http://dx.doi.org/10.1007/s11340-013-9717-6
TAY C J, QUAN C G, WU T, et al. Integrated method for 3-D rigid-body displacement measurement using fringe projection [J]. Optical Engineering, 2004, 43(5): 1152-1159. doi: 10.1117/1.1687728http://dx.doi.org/10.1117/1.1687728
SIEGMANN P, ÁLVAREZ-FERNÁNDEZ V, DÍAZ-GARRIDO F, et al. A simultaneous in- and out-of-plane displacement measurement method [J]. Optics Letters, 2011, 36(1): 10-12. doi: 10.1364/ol.36.000010http://dx.doi.org/10.1364/ol.36.000010
FELIPE-SESÉ L, DIAZ-GARRIDO F A, PATTERSON E A. Exploiting measurement-based validation for a high-fidelity model of dynamic indentation of a hyperelastic material [J]. International Journal of Solids and Structures, 2016, 97-98: 520-529. doi: 10.1016/j.ijsolstr.2016.06.036http://dx.doi.org/10.1016/j.ijsolstr.2016.06.036
FELIPE-SESÉ L, DÍAZ F A. Damage methodology approach on a composite panel based on a combination of fringe projection and 2D digital image correlation [J]. Mechanical Systems and Signal Processing, 2018, 101: 467-479. doi: 10.1016/j.ymssp.2017.09.002http://dx.doi.org/10.1016/j.ymssp.2017.09.002
FELIPE-SESÉ L, LÓPEZ-ALBA E, DÍAZ F A. Full-field 3D displacement and strain analysis during low energy impact tests employing a single-camera system [J]. Thin-Walled Structures, 2020, 148: 106584. doi: 10.1016/j.tws.2019.106584http://dx.doi.org/10.1016/j.tws.2019.106584
NGUYEN T N, HUNTLEY J M, BURGUETE R L, et al. Shape and displacement measurement of discontinuous surfaces by combining fringe projection and digital image correlation [J]. Optical Engineering, 2011, 50(10): 101505. doi: 10.1117/1.3572190http://dx.doi.org/10.1117/1.3572190
SHI H J, JI H W, YANG G B, et al. Shape and deformation measurement system by combining fringe projection and digital image correlation [J]. Optics and Lasers in Engineering, 2013, 51(1): 47-53. doi: 10.1016/j.optlaseng.2012.07.020http://dx.doi.org/10.1016/j.optlaseng.2012.07.020
FELIPE-SESÉ L, SIEGMANN P, DÍAZ F A, et al. Simultaneous in-and-out-of-plane displacement measurements using fringe projection and digital image correlation [J]. Optics and Lasers in Engineering, 2014, 52: 66-74. doi: 10.1016/j.optlaseng.2013.07.025http://dx.doi.org/10.1016/j.optlaseng.2013.07.025
SUTTON M A, YAN J H, TIWARI V, et al. The effect of out-of-plane motion on 2D and 3D digital image correlation measurements [J]. Optics and Lasers in Engineering, 2008, 46(10): 746-757. doi: 10.1016/j.optlaseng.2008.05.005http://dx.doi.org/10.1016/j.optlaseng.2008.05.005
WU Z J, GUO W B, PAN B, et al. A DIC-assisted fringe projection profilometry for high-speed 3D shape, displacement and deformation measurement of textured surfaces [J]. Optics and Lasers in Engineering, 2021, 142: 106614. doi: 10.1016/j.optlaseng.2021.106614http://dx.doi.org/10.1016/j.optlaseng.2021.106614
KREIN P T, BALOG R S, MIRJAFARI M. Minimum energy and capacitance requirements for single-phase inverters and rectifiers using a ripple port [J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4690-4698. doi: 10.1109/tpel.2012.2186640http://dx.doi.org/10.1109/tpel.2012.2186640
ZHENG D L, KEMAO Q, HAN J, et al. High-speed phase-shifting profilometry under fluorescent light [J]. Optics and Lasers in Engineering, 2020, 128: 106033. doi: 10.1016/j.optlaseng.2020.106033http://dx.doi.org/10.1016/j.optlaseng.2020.106033
CHEN Z S, CHEN Z D, WANG H R, et al. 3D shape, deformation and strain measurement on complex structure using DIC-assisted fringe projection profilometry [C]. International Conference on Optical and Photonic Engineering (icOPEN 2022). Nanjing, China: SPIE, 2023: 1255027: 482-488. doi: 10.1117/12.2666885http://dx.doi.org/10.1117/12.2666885
LI B W, ZHANG S. Novel method for measuring a dense 3D strain map of robotic flapping wings [J]. Measurement Science and Technology, 2018, 29(4): 045402. doi: 10.1088/1361-6501/aaa4cchttp://dx.doi.org/10.1088/1361-6501/aaa4cc
ZHANG J, LUO B, SU X, et al. Depth range enhancement of binary defocusing technique based on multi-frequency phase merging [J]. Optics Express, 2019, 27(25): 36717-36730. doi: 10.1364/oe.27.036717http://dx.doi.org/10.1364/oe.27.036717
HAN B B, YANG S R, CHEN S Y. Determination and adjustment of optimal defocus level for fringe projection systems [J]. Applied Optics, 2019, 58(23): 6300-6307. doi: 10.1364/ao.58.006300http://dx.doi.org/10.1364/ao.58.006300
ZHU S J, WU Z J, ZHANG J, et al. Superfast and large-depth-range sinusoidal fringe generation for multi-dimensional information sensing [J]. Photonics Research, 2022, 10(11): 2590-2598. doi: 10.1364/prj.468658http://dx.doi.org/10.1364/prj.468658
FENG S J, CHEN Q, GU G H, et al. Fringe pattern analysis using deep learning [J]. Advanced Photonics, 2019, 1(2): 025001. doi: 10.1117/1.ap.1.2.025001http://dx.doi.org/10.1117/1.ap.1.2.025001
ZUO C, QIAN J M, FENG S J, et al. Deep learning in optical metrology: a review [J]. Light: Science & Applications, 2022, 11(1): 39. doi: 10.1038/s41377-022-00714-xhttp://dx.doi.org/10.1038/s41377-022-00714-x
DONG B, LI C Z, PAN B. Fluorescent digital image correlation applied for macroscale deformation measurement [J]. Applied Physics Letters, 2020, 117(4): 044101. doi: 10.1063/5.0016384http://dx.doi.org/10.1063/5.0016384
ZHAO Y, YU H T, ZHU R B, et al. Novel optical-markers-assisted point clouds registration for panoramic 3D shape measurement [J]. Optics and Lasers in Engineering, 2023, 161: 107319. doi: 10.1016/j.optlaseng.2022.107319http://dx.doi.org/10.1016/j.optlaseng.2022.107319
FELIPE-SESÉ L, ANDRÉS-CASTRO F, MOLINA-VIEDMA Á, et al. Digital image correlation employing thermal marking [J]. Physical Sciences Forum, 2022, 4(1): 3.
0
浏览量
75
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构