1.中国科学技术大学 生物医学工程学院, 安徽 合肥 230026
2.中国科学院 苏州生物工程技术研究所, 江苏 苏州 215163
3.长春理工大学 电子信息工程学院, 吉林 长春 130022
4.季华实验室, 广东 佛山 528200
5.徐州医科大学 医学影像学院, 江苏 徐州 221004
[ "王青(1997—),女,甘肃平凉人,硕士研究生,2020年于复旦大学获得学士学位,主要从事原子磁力计电子学及自动控制方面的研究。E-mail:wq3uniq@ mail.ustc.edu.cn" ]
[ "杨晓冬(1977—),男,湖北武汉人,博士,研究员,2005年于中国科学院武汉物理与数学研究所获得博士学位,主要从事医学影像仪器研发和应用方面的研究。E-mail:xiaodong.yang@sibet.ac.cn" ]
扫 描 看 全 文
王青, 姚泽坤, 张寅, 等. 基于ADN8834的高精度DBR激光器温度自动控制系统[J]. 液晶与显示, 2023,38(5):609-616.
WANG Qing, YAO Ze-kun, ZHANG Yin, et al. High accuracy temperature control system of DBR laser based on ADN8834[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(5):609-616.
王青, 姚泽坤, 张寅, 等. 基于ADN8834的高精度DBR激光器温度自动控制系统[J]. 液晶与显示, 2023,38(5):609-616. DOI: 10.37188/CJLCD.2023-0068.
WANG Qing, YAO Ze-kun, ZHANG Yin, et al. High accuracy temperature control system of DBR laser based on ADN8834[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(5):609-616. DOI: 10.37188/CJLCD.2023-0068.
对于高灵敏原子磁力计极弱磁测量,激光温度的精确稳定控制是一项必不可少的工作。激光温度不稳定会导致激光波长波动和漂移,从而降低原子磁力计的灵敏度。为了降低激光器温度波动对原子磁力计的影响,本文设计并实现了一个基于ADN8834温度控制芯片的高精度DBR激光器自动温度控制系统。首先,基于ADN8834和高精度模/数转换芯片LTC2377设计了温度反馈电路,成功采集到了与温度对应的模拟电压信号并将其转换为数字信号送入FPGA。然后,在FPGA中实现了增量式数字PID算法,自动计算温度控制信号。最后,设计了数/模转换电路将该温度控制信号转换为模拟信号传递给ADN8834,ADN8834输出加热或冷却信号来控制半导体热电制冷器,从而实现闭环温度自动控制。实验结果表明,当目标温度分别设定在20,25,30 ℃时,该温度自动控制系统的温度稳定性均在±0.005 ℃,测试DBR激光器输出波长稳定性范围为±2 pm。该激光器自动温度控制系统温度稳定性高,且操作方便,设计灵活,基本满足原子磁力计系统对激光温度控制器的要求。
For the extremely weak magnetic field measurement of atomic magnetometers, the precise and stable control of laser temperature is an essential work. Laser temperature instability can lead to laser wavelength fluctuations and drift, thus reducing the sensitivity of atomic magnetometers. In order to reduce the influence of laser temperature fluctuation on atomic magnetometer, a high precision DBR laser automatic temperature control system based on ADN8834 temperature control chip is designed and implemented. Firstly, a temperature feedback circuit is designed based on ADN8834 and a high precise A/D converter chip LTC2377, so that the analog voltage signal corresponding to the temperature is successfully collected and converted into a digital signal and sent to the FPGA. Then, the incremental digital PID algorithm is implemented in FPGA to automatically calculate the temperature control signal. Then, a D/A converter circuit is designed to convert the temperature control signal into an analog signal and transmit it to ADN8834. Finally, ADN8834 outputs heating or cooling signals to control the semiconductor thermoelectric cooler, so as to realize closed-loop temperature automatic control. The experimental results show that the temperature stability of the automatic temperature control system is ±0.005 ℃ when the target temperature is set at 20, 25, 30 ℃, and the stability of output wavelength is ±2 pm. This DBR laser automatic temperature control system has high temperature stability, convenient operation and flexible design, and basically meets the requirements of atomic magnetometer system for laser temperature control.
ADN8834数字PID算法温度控制半导体热电制冷器
ADN8834digital PID algorithmtemperature controlTEC
RU X Y, HE K Y, LYU B, et al. Multimodal neuroimaging with optically pumped magnetometers: a simultaneous MEG-EEG-fNIRS acquisition system [J]. NeuroImage, 2022, 259: 119420. doi: 10.1016/j.neuroimage.2022.119420http://dx.doi.org/10.1016/j.neuroimage.2022.119420
YAN Y G, LU J X, ZHANG S W, et al. Three-axis closed-loop optically pumped magnetometer operated in the SERF regime [J]. Optics Express, 2022, 30(11): 18300-18309. doi: 10.1364/oe.458367http://dx.doi.org/10.1364/oe.458367
CAO F Z, AN N, XU W N, et al. OMMR: co-registration toolbox of OPM-MEG and MRI [J]. Frontiers in Neuroscience, 2022, 16: 984036. doi: 10.3389/fnins.2022.984036http://dx.doi.org/10.3389/fnins.2022.984036
李辉, 江敏, 朱振南, 等. 铷-氙气室原子磁力仪系统磁场测量能力的标定[J]. 物理学报, 2019, 68(16): 160701. doi: 10.7498/aps.68.20190868http://dx.doi.org/10.7498/aps.68.20190868
LI H, JIANG M, ZHU Z N, et al. Calibration of magnetic field measurement capability of rubidium-xenon vapor cell atomic magnetometer [J]. Acta Physica Sinica, 2019, 68(16): 160701. (in Chinese). doi: 10.7498/aps.68.20190868http://dx.doi.org/10.7498/aps.68.20190868
CHEN Y J, MUHAMMAD J A, ZHAO Y, et al. Influence of light intensity on the slope of a nonlinear magneto-optical rotation for a laser locked to the Cs Fg=4→Fe=5 transition [J]. Journal of the Korean Physical Society, 2021, 78(12): 1171-1178. doi: 10.1007/s40042-021-00185-0http://dx.doi.org/10.1007/s40042-021-00185-0
HUANG K, NIE Y L, DU B X, et al. A compact two-dimensional quantum magnetometer module based on the fixed-frequency optical detection of magnetic resonance using nitrogen vacancy centers [J]. Applied Physics Letters, 2021, 119(11): 114005. doi: 10.1063/5.0061156http://dx.doi.org/10.1063/5.0061156
KIM D I, RHEE H G, SONG J B, et al. Laser output power stabilization for direct laser writing system by using an acousto-optic modulator [J]. Review of Scientific Instruments, 2007, 78(10): 103110. doi: 10.1063/1.2801012http://dx.doi.org/10.1063/1.2801012
JIA Y C, LIU Z C, CHAI Z, et al. The optimization and stabilization of pump light frequency in the minimized atomic magnetometer [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7005409. doi: 10.1109/tim.2021.3097406http://dx.doi.org/10.1109/tim.2021.3097406
辛倩倩,万熠,毕文波,等. 半导体激光器波长温度特性的建模与试验研究[J]. 工具技术,2017,51(12):115-117. doi: 10.3969/j.issn.1000-7008.2017.12.030http://dx.doi.org/10.3969/j.issn.1000-7008.2017.12.030
XIN Q Q, WAN Y, BI W B, et al. Study on modeling and experiment of wavelength temperature characteristic for semiconductor laser [J]. Tool Engineering, 2017, 51(12): 115-117. (in Chinese). doi: 10.3969/j.issn.1000-7008.2017.12.030http://dx.doi.org/10.3969/j.issn.1000-7008.2017.12.030
LI N, QIU X B, WEI Y B, et al. A portable low-power integrated current and temperature laser controller for high-sensitivity gas sensor applications [J]. Review of Scientific Instruments, 2018, 89(10): 103103. doi: 10.1063/1.5044230http://dx.doi.org/10.1063/1.5044230
刘冰,王永成. 极紫外相机电控单元的设计与实现[J]. 液晶与显示,2015,30(6):972-978. doi: 10.3788/yjyxs20153006.0972http://dx.doi.org/10.3788/yjyxs20153006.0972
LIU B, WANG Y C. Design and implement of extreme ultraviolet camera electronic control unit [J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(6): 972-978. (in Chinese). doi: 10.3788/yjyxs20153006.0972http://dx.doi.org/10.3788/yjyxs20153006.0972
YANG X L, WANG H J, LU H Y, et al. Application for PID algorithm in the digital design of power [C]//Proceedings of the 2nd International Conference on Control, Instrumentation and Automation (ICCIA). Shiraz, Iran: IEEE, 2011: 78-81. doi: 10.1109/icciautom.2011.6183911http://dx.doi.org/10.1109/icciautom.2011.6183911
左朋莎,任欢,任培安. 基于ADN8834的模拟激光器自动温度控制技术研究[J]. 测控技术,2017,36(5):74-6. doi: 10.3969/j.issn.1000-8829.2017.05.018http://dx.doi.org/10.3969/j.issn.1000-8829.2017.05.018
ZUO P S, REN H, REN P A. Study on temperature automatic control technology for analog laser based on ADN8834 [J]. Measurement & Control Technology, 2017, 36(5): 74-76. (in Chinese). doi: 10.3969/j.issn.1000-8829.2017.05.018http://dx.doi.org/10.3969/j.issn.1000-8829.2017.05.018
ZHOU D B, HE Y M, LU D, et al. 25 Gb/s data transmission using a directly modulated InGaAlAs DBR laser over 14 nm wavelength tuning range [J]. Photonics, 2021, 8(3): 84. doi: 10.3390/photonics8030084http://dx.doi.org/10.3390/photonics8030084
THORLABS. LDM21 5.6 mm/9 mm laser diode mount user guide[EB/OL]. (2018-09-11). http://wiki.chem.gwu.edu/MillerLab/images/a/a6/Thorlabs_LDM21_5.6 mm_9 mm_Laser_Diode_Mount_User_Guide_Manual.pdfhttp://wiki.chem.gwu.edu/MillerLab/images/a/a6/Thorlabs_LDM21_5.6mm_9mm_Laser_Diode_Mount_User_Guide_Manual.pdf.
张科,靖固. 利用FPGA的增量式PID控制的研究[J]. 现代制造工程,2009(3):112-114. doi: 10.3969/j.issn.1671-3133.2009.03.030http://dx.doi.org/10.3969/j.issn.1671-3133.2009.03.030
ZHANG K, JING G. The design of increasing PID controller based on FPGA [J]. Modern Manufacturing Engineering, 2009(3): 112-114. (in Chinese). doi: 10.3969/j.issn.1671-3133.2009.03.030http://dx.doi.org/10.3969/j.issn.1671-3133.2009.03.030
黄戈里, 秦燕燕. PID控制的激光器温度控制系统的设计与实现 [J]. 激光杂志, 2016, 37(10): 142-145. doi: 10.14016/j.cnki.jgzz.2016.10.142http://dx.doi.org/10.14016/j.cnki.jgzz.2016.10.142
HUANG G L, QIN Y Y. Design and Realization of temperature control system of laser controlled by PID [J]. Laser Journal, 2016, 37(10): 142-145. (in Chinese). doi: 10.14016/j.cnki.jgzz.2016.10.142http://dx.doi.org/10.14016/j.cnki.jgzz.2016.10.142
单成玉. 温度对半导体激光器性能参数的影响[J]. 吉林师范大学学报(自然科学版),2003,24(4):95-97. doi: 10.3969/j.issn.1674-3873.2003.04.039http://dx.doi.org/10.3969/j.issn.1674-3873.2003.04.039
SHAN C Y. Temperature’s effect on semiconductor laser performance parameter [J]. Journal of Jilin Normal University (Natural Science Edition), 2003, 24(4): 95-97. (in Chinese). doi: 10.3969/j.issn.1674-3873.2003.04.039http://dx.doi.org/10.3969/j.issn.1674-3873.2003.04.039
0
浏览量
31
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构