1.沈阳化工大学 信息工程学院, 辽宁 沈阳 110142
2.96901部队, 北京 100094
[ "许延龙(1996—),男,河北张家口人,硕士研究生,2020年于烟台理工学院获得学士学位,主要从事目标识别、目标检测等方面的研究。E-mail:xyl13101257149@163.com" ]
[ "潘昊(1986—),男,内蒙古阿拉善左旗人,博士,讲师,2016年于中国科学院沈阳自动化研究所获得博士学位,主要从事大数据分析与数据挖掘、人工智能等方面的研究。E-mail:panhao@ syuct.edu.cn" ]
扫 描 看 全 文
许延龙, 潘昊, 丁柏圆. 基于深度信念网络的属性散射中心匹配及在SAR图像目标识别中的应用[J]. 液晶与显示, 2023,38(11):1511-1520.
XU Yan-long, PAN Hao, DING Bai-yuan. Attributed scattering center matching based on deep belief network and application in target recognition of SAR images[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(11):1511-1520.
许延龙, 潘昊, 丁柏圆. 基于深度信念网络的属性散射中心匹配及在SAR图像目标识别中的应用[J]. 液晶与显示, 2023,38(11):1511-1520. DOI: 10.37188/CJLCD.2023-0052.
XU Yan-long, PAN Hao, DING Bai-yuan. Attributed scattering center matching based on deep belief network and application in target recognition of SAR images[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(11):1511-1520. DOI: 10.37188/CJLCD.2023-0052.
合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标识别是SAR图像解译的重要应用。为提高SAR目标识别的稳健性,本文提出基于深度信念网络(Deep Belief Network,DBN)的属性散射中心匹配方法。属性散射中心参数特征丰富,能够很好地反映目标的局部散射特性。DBN发挥深度学习优势,可以实现测试样本与模板样本散射中心集的稳健匹配,并且能够较好地适应噪声干扰、部分缺失等情形。在构建的属性散射中心匹配关系的基础上,定义相似度度量准则。基于最大相似度的原则确定测试样本所属类别。实验依托MSTAR数据集开展,经验证,所提方法对于SAR目标识别问题具有良好的有效性和稳健性。
Synthetic aperture radar (SAR) image target recognition is an important application of SAR image interpretation. In order to improve the robustness of SAR target recognition, this paper proposed an attribute scattering center matching method based on deep belief network (DBN). The attribute scattering center had rich parameters, which could well reflect the local scattering characteristics of the target. DBN took advantage of deep learning to achieve robust matching between the scattering center sets from test samples and template samples, which could also better adapt to noise interference, partial absence and other situations. Based on the matching correspondence of the attribute scattering center sets, the similarity measure criterion was defined. The target label of the test sample was determined based on the principle of the maximum similarity. Experiments were carried out based on MSTAR dataset, and the proposed method was proved to be effective and robust for SAR target recognition.
合成孔径雷达目标识别属性散射中心深度信念网络
synthetic aperture radartarget recognitionattribute scattering centerdeep belief network
文贡坚,朱国强,殷红成,等.基于三维电磁散射参数化模型的SAR目标识别方法[J].雷达学报,2017,6(2):115-135.
WEN G J, ZHU G Q, YIN H C, et al. SAR ATR based on 3D parametric electromagnetic scattering model [J]. Journal of Radars, 2017, 6(2): 115-135. (in Chinese)
AMOON M, REZAI-RAD G A. Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moments features [J]. IET Computer Vision, 2014, 8(2): 77-85. doi: 10.1049/iet-cvi.2013.0027http://dx.doi.org/10.1049/iet-cvi.2013.0027
谢晴,张洪.SAR图像多层次正则化增强及在目标识别中的应用[J].电子测量与仪器学报,2018,32(9):157-162.
XIE Q, ZHANG H. Multi-level SAR image enhancement based on regularization with application to target recognition [J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(9): 157-162. (in Chinese)
MISHRA A K, MOTAUNG T. Application of linear and nonlinear PCA to SAR ATR [C]. 2015 25th International Conference Radioelektronika. Pardubice: IEEE, 2015: 349-354. doi: 10.1109/radioelek.2015.7129065http://dx.doi.org/10.1109/radioelek.2015.7129065
CUI Z Y, CAO Z J, YANG J Y, et al. Target recognition in synthetic aperture radar images via non-negative matrix factorisation [J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1376-1385. doi: 10.1049/iet-rsn.2014.0407http://dx.doi.org/10.1049/iet-rsn.2014.0407
DONG G G, KUANG G Y, WANG N, et al. SAR target recognition via joint sparse representation of monogenic signal [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3316-3328. doi: 10.1109/jstars.2015.2436694http://dx.doi.org/10.1109/jstars.2015.2436694
李帅,许悦雷,马时平,等.基于小波变换和深层稀疏编码的SAR目标识别[J].电视技术,2014,38(13):31-35. doi: 10.3969/j.issn.1002-8692.2014.13.009http://dx.doi.org/10.3969/j.issn.1002-8692.2014.13.009
LI S, XU Y L, MA S P, et al. SAR target recognition using wavelet transform and deep sparse autoencoders [J]. Video Engineering, 2014, 38(13): 31-35. (in Chinese). doi: 10.3969/j.issn.1002-8692.2014.13.009http://dx.doi.org/10.3969/j.issn.1002-8692.2014.13.009
周光宇,刘邦权,张亶.基于变分模态分解的SAR图像目标识别方法[J].国土资源遥感,2020,32(2):33-39. doi: 10.6046/gtzyyg.2020.02.05http://dx.doi.org/10.6046/gtzyyg.2020.02.05
ZHOU G Y, LIU B Q, ZHANG D. Target recognition in SAR images based on variational mode decomposition [J]. Remote Sensing for Land & Resources, 2020, 32(2): 33-39. (in Chinese). doi: 10.6046/gtzyyg.2020.02.05http://dx.doi.org/10.6046/gtzyyg.2020.02.05
王源源.一种基于多分辨率表示的SAR图像识别方法[J].电光与控制,2020,27(10):31-36. doi: 10.3969/j.issn.1671-637X.2020.10.007http://dx.doi.org/10.3969/j.issn.1671-637X.2020.10.007
WANG Y Y. A multi-resolution representations based SAR image recognition method [J]. Electronics Optics & Control, 2020, 27(10): 31-36. (in Chinese). doi: 10.3969/j.issn.1671-637X.2020.10.007http://dx.doi.org/10.3969/j.issn.1671-637X.2020.10.007
胡媛媛,韩彦龙.快速自适应二维经验模态分解在SAR目标识别中的应用研究[J].电光与控制,2021,28(8):40-43,87. doi: 10.3969/j.issn.1671-637X.2021.08.009http://dx.doi.org/10.3969/j.issn.1671-637X.2021.08.009
HU Y Y, HAN Y L. Application of fast and adaptive bidimensional empirical mode decomposition to SAR target recognition [J]. Electronics Optics & Control, 2021, 28(8): 40-43, 87. (in Chinese). doi: 10.3969/j.issn.1671-637X.2021.08.009http://dx.doi.org/10.3969/j.issn.1671-637X.2021.08.009
柳小文,雷军程,伍雁鹏.基于二维经验模态分解的合成孔径雷达目标识别方法[J].激光与光电子学进展,2020,57(4):041004. doi: 10.3788/lop57.041004http://dx.doi.org/10.3788/lop57.041004
LIU X W, LEI J C, WU Y P. Synthetic aperture radar target-recognition method based on bidimensional empirical mode decomposition [J]. Laser & Optoelectronics Progress, 2020, 57(4): 041004. (in Chinese). doi: 10.3788/lop57.041004http://dx.doi.org/10.3788/lop57.041004
莫海宁,钟友坤.基于BVMD特征决策融合的SAR目标识别方法[J].电子信息对抗技术,2022,37(5):40-44,50. doi: 10.3969/j.issn.1674-2230.2022.05.009http://dx.doi.org/10.3969/j.issn.1674-2230.2022.05.009
MO H N, ZHONG Y K. SAR target recognition based on decision fusion of BVMD features [J]. Electronic Information Warfare Technology, 2022, 37(5): 40-44, 50. (in Chinese). doi: 10.3969/j.issn.1674-2230.2022.05.009http://dx.doi.org/10.3969/j.issn.1674-2230.2022.05.009
郝岩,白艳萍,张校非.基于KNN的合成孔径雷达目标识别[J].火力与指挥控制,2018,43(9):111-113,118. doi: 10.3969/j.issn.1002-0640.2018.09.023http://dx.doi.org/10.3969/j.issn.1002-0640.2018.09.023
HAO Y, BAI Y P, ZHANG X F. Synthetic aperture radar target recognition based on KNN [J]. Fire Control & Command Control, 2018, 43(9): 111-113, 118. (in Chinese). doi: 10.3969/j.issn.1002-0640.2018.09.023http://dx.doi.org/10.3969/j.issn.1002-0640.2018.09.023
刘长清,陈博,潘舟浩,等.基于仿真SAR和SVM分类器的目标识别技术研究[J].中国电子科学研究院学报,2016,11(3):257-262. doi: 10.3969/j.issn.1673-5692.2016.03.008http://dx.doi.org/10.3969/j.issn.1673-5692.2016.03.008
LIU C Q, CHEN B, PAN Z H, et al. Research of target recognition technique via simulation SAR and SVM classifier [J]. Journal of CAEIT, 2016, 11(3): 257-262. (in Chinese). doi: 10.3969/j.issn.1673-5692.2016.03.008http://dx.doi.org/10.3969/j.issn.1673-5692.2016.03.008
张虹,左鑫兰,黄瑶.基于稀疏表示系数相关性的特征选择及SAR目标识别方法[J].激光与光电子学进展,2020,57(14):141029. doi: 10.3788/lop57.141029http://dx.doi.org/10.3788/lop57.141029
ZHANG H, ZUO X L, HUANG Y. Feature selection based on the correlation of sparse coefficient vectors with application to SAR target recognition [J]. Laser & Optoelectronics Progress, 2020, 57(14): 141029. (in Chinese). doi: 10.3788/lop57.141029http://dx.doi.org/10.3788/lop57.141029
唐吉深,覃少华.稀疏表示系数下局部最优重构的SAR图像目标识别算法[J].探测与控制学报,2021,43(2):69-75,80.
TANG J S, QIN S H. SAR images recognition based on sparse coefficients optimal local reconstruction [J]. Journal of Detection & Control, 2021, 43(2): 69-75, 80. (in Chinese)
李亚娟.结合全局和局部稀疏表示的SAR图像目标识别方法[J].电子测量与仪器学报,2020,34(2):165-171.
LI Y J. Target recognition of SAR images based on combination of global and local sparse representations [J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(2): 165-171. (in Chinese)
李亚娟.结合多决策准则稀疏表示的SAR图像目标识别方法[J].红外与激光工程,2021,50(8):20210138.
LI Y J. Combination of multiple decision principles based on sparse representation-based classification for target recognition of SAR image [J]. Infrared and Laser Engineering, 2021, 50(8): 20210138. (in Chinese)
ZUO C, QIAN J M, FENG S J, et al. Deep learning in optical metrology: a review [J]. Light: Science & Applications, 2022, 11(1): 39. doi: 10.1038/s41377-022-00714-xhttp://dx.doi.org/10.1038/s41377-022-00714-x
RIVENSON Y, WU Y C, OZCAN A. Deep learning in holography and coherent imaging [J]. Light: Science & Applications, 2019, 8: 85. doi: 10.1038/s41377-019-0196-0http://dx.doi.org/10.1038/s41377-019-0196-0
CHEN S Z, WANG H P, XU F, et al. Target classification using the deep convolutional networks for SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817. doi: 10.1109/tgrs.2016.2551720http://dx.doi.org/10.1109/tgrs.2016.2551720
徐英,谷雨,彭冬亮,等.基于DRGAN和支持向量机的合成孔径雷达图像目标识别[J].光学 精密工程,2020,28(3):727-735. doi: 10.3788/ope.20202803.0727http://dx.doi.org/10.3788/ope.20202803.0727
XU Y, GU Y, PENG D L, et al. SAR ATR based on disentangled representation learning generative adversarial networks and support vector machine [J]. Optics and Precision Engineering, 2020, 28(3): 727-735. (in Chinese). doi: 10.3788/ope.20202803.0727http://dx.doi.org/10.3788/ope.20202803.0727
刘飞,高红艳,卫泽刚,等.基于Res-Net深度特征的SAR图像目标识别方法[J].液晶与显示,2021,36(4):624-631. doi: 10.37188/CJLCD.2020-0226http://dx.doi.org/10.37188/CJLCD.2020-0226
LIU F, GAO H Y, WEI Z G, et al. SAR image target recognition method using based on Res-Net deep features [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(4): 624-631. (in Chinese). doi: 10.37188/CJLCD.2020-0226http://dx.doi.org/10.37188/CJLCD.2020-0226
张振中.基于更新分类器的合成孔径雷达图像目标识别[J].激光与光电子学进展,2021,58(14):1410013.
ZHANG Z Z. Synthetic aperture radar image target recognition based on updated classifier [J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410013. (in Chinese)
李辉.基于峰值特征高斯混合建模的SAR目标识别[J].电子测量与仪器学报,2018,32(8):103-108.
LI H. SAR target recognition based on Gaussian mixture modeling of peak features [J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(8): 103-108. (in Chinese)
王菁,周建江,汪飞.基于GTD模型的目标二维散射中心提取[J].电子与信息学报,2009,31(4):958-962.
WANG J, ZHOU J J, WANG F. 2D scattering centers extraction of objects based on GTD model [J]. Journal of Electronics & Information Technology, 2009, 31(4): 958-962. (in Chinese)
唐涛,粟毅.散射中心特征序贯匹配的SAR图像目标识别方法[J].系统工程与电子技术,2012,34(6):1131-1135. doi: 10.3969/j.issn.1001-506X.2012.06.09http://dx.doi.org/10.3969/j.issn.1001-506X.2012.06.09
TANG T, SU Y. Object recognition in SAR imagery using sequential feature matching of scattering centers [J]. Systems Engineering and Electronics, 2012, 34(6): 1131-1135. (in Chinese). doi: 10.3969/j.issn.1001-506X.2012.06.09http://dx.doi.org/10.3969/j.issn.1001-506X.2012.06.09
丁柏圆,文贡坚,余连生,等.属性散射中心匹配及其在SAR目标识别中的应用[J].雷达学报,2017,6(2):157-166.
DING B Y, WEN G J, YU L S, et al. Matching of attributed scattering center and its application to synthetic aperture radar Automatic Target Recognition [J]. Journal of Radars, 2017, 6(2): 157-166. (in Chinese)
吕艺璇,王智睿,王佩瑾,等.基于散射信息和元学习的SAR图像飞机目标识别[J].雷达学报,2022,11(4):652-665. doi: 10.12000/JR22044http://dx.doi.org/10.12000/JR22044
LYU Y X, WANG Z R, WANG P J, et al. Scattering information and meta-learning based SAR images interpretation for aircraft target recognition [J]. Journal of Radars, 2022, 11(4): 652-665. (in Chinese). doi: 10.12000/JR22044http://dx.doi.org/10.12000/JR22044
张婷,蔡德饶.基于属性散射中心匹配的噪声稳健SAR目标识别方法[J].中国电子科学研究院学报,2019,14(6):557-562,567. doi: 10.3969/j.issn.1673-5692.2019.06.001http://dx.doi.org/10.3969/j.issn.1673-5692.2019.06.001
ZHANG T, CAI D R. SAR target recognition method based on attributed scattering center matching with robustness to noise corruption [J]. Journal of CAEIT, 2019, 14(6): 557-562, 567. (in Chinese). doi: 10.3969/j.issn.1673-5692.2019.06.001http://dx.doi.org/10.3969/j.issn.1673-5692.2019.06.001
刘阳.基于属性散射中心多层次匹配的SAR目标识别方法[J].电子测量与仪器学报,2019,33(11):192-198.
LIU Y. Target recognition of SAR images based on multi-level matching of attributed scattering centers [J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(11): 192-198. (in Chinese)
来雨.基于属性散射中心的SAR图像重构及在目标识别中的应用[J].火力与指挥控制,2021,46(2):46-52. doi: 10.3969/j.issn.1002-0640.2021.02.008http://dx.doi.org/10.3969/j.issn.1002-0640.2021.02.008
LAI Y. SAR image reconstruction based on attribute scattering centers with application in target recognition [J]. Fire Control & Command Control, 2021, 46(2): 46-52. (in Chinese). doi: 10.3969/j.issn.1002-0640.2021.02.008http://dx.doi.org/10.3969/j.issn.1002-0640.2021.02.008
郑秋菊,邓华阳,陈欣.一种基于属性散射中心的SAR遮挡目标识别方法[J].电讯技术,2022,62(8):1125-1130. doi: 10.3969/j.issn.1001-893x.2022.08.016http://dx.doi.org/10.3969/j.issn.1001-893x.2022.08.016
ZHENG Q J, DENG H Y, CHEN X. A SAR occluded target recognition method based on attributed scattering centers [J]. Telecommunication Engineering, 2022, 62(8): 1125-1130. (in Chinese). doi: 10.3969/j.issn.1001-893x.2022.08.016http://dx.doi.org/10.3969/j.issn.1001-893x.2022.08.016
DING B Y, WEN G J, HUANG X H, et al. Target recognition in SAR images by exploiting the azimuth sensitivity [J]. Remote Sensing Letters, 2017, 8(9): 821-830. doi: 10.1080/2150704x.2017.1331052http://dx.doi.org/10.1080/2150704x.2017.1331052
SARIKAYA R, HINTON G E, DEORAS A. Application of deep belief networks for natural language understanding [J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(4): 778-784. doi: 10.1109/taslp.2014.2303296http://dx.doi.org/10.1109/taslp.2014.2303296
张静克,计科峰,邢相薇.SAR目标属性散射中心特征提取与分析[J].雷达科学与技术,2011,9(3):207-212,218. doi: 10.3969/j.issn.1672-2337.2011.03.003http://dx.doi.org/10.3969/j.issn.1672-2337.2011.03.003
ZHANG J K, JI K F, XING X W. Feature extraction and analysis of attributed scattering centers on SAR targets [J]. Radar Science and Technology, 2011, 9(3): 207-212, 218. (in Chinese). doi: 10.3969/j.issn.1672-2337.2011.03.003http://dx.doi.org/10.3969/j.issn.1672-2337.2011.03.003
李飞,纠博,刘宏伟,等.基于稀疏表示的SAR图像属性散射中心参数估计算法[J].电子与信息学报,2014,36(4):931-937.
LI F, JIU B, LIU H W, et al. Sparse representation based algorithm for estimation of attributed scattering center parameter on SAR imagery [J]. Journal of Electronics & Information Technology, 2014, 36(4): 931-937. (in Chinese)
徐嘉华,张小宽,郑舒予,等.基于改进正交匹配追踪算法的属性散射中心提取[J].系统工程与电子技术,2021,43(8):2076-2082. doi: 10.12305/j.issn.1001-506X.2021.08.07http://dx.doi.org/10.12305/j.issn.1001-506X.2021.08.07
XU J H, ZHANG X K, ZHENG S Y, et al. Attribute scattering center extraction based on improved orthogonal matching pursuit algorithm [J]. Systems Engineering and Electronics, 2021, 43(8): 2076-2082. (in Chinese). doi: 10.12305/j.issn.1001-506X.2021.08.07http://dx.doi.org/10.12305/j.issn.1001-506X.2021.08.07
段佳,曹兰英,吴亿锋.基于属性散射中心的SAR成像方法[J].系统工程与电子技术,2021,43(10):2782-2788. doi: 10.12305/j.issn.1001-506X.2021.10.10http://dx.doi.org/10.12305/j.issn.1001-506X.2021.10.10
DUAN J, CAO L Y, WU Y F. Imaging algorithm for SAR based on attributed scattering center models [J]. Systems Engineering and Electronics, 2021, 43(10): 2782-2788. (in Chinese). doi: 10.12305/j.issn.1001-506X.2021.10.10http://dx.doi.org/10.12305/j.issn.1001-506X.2021.10.10
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构