1.合肥工业大学 光电技术研究院 特种显示技术国家工程实验室, 测量理论与精密仪器安徽省重点实验室, 安徽 合肥 230009
[ "胡琪(1997—),女,安徽芜湖人,硕士研究生,2020年于江西科技师范大学获得学士学位,主要从事手性有机半导体合成以及圆偏振光探测器的研究。E-mail:huqi19710528@163.com" ]
[ "王晓鸿(1981—),女,山东临朐人,博士,副研究员,2016年于合肥工业大学获得博士学位,主要从事有机光电功能材料、有机电子器件和有机光电探测器方面的研究。E-mail:xhwang11@hfut.edu.cn" ]
扫 描 看 全 文
胡琪, 徐云浩, 陈思雨, 等. 基于手性聚噻吩嵌段共聚物的圆偏振光探测器[J]. 液晶与显示, 2023,38(5):555-562.
HU Qi, XU Yun-hao, CHEN Si-yu, et al. Circularly polarized photodetector based on chiral polythiophene block copolymer[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(5):555-562.
胡琪, 徐云浩, 陈思雨, 等. 基于手性聚噻吩嵌段共聚物的圆偏振光探测器[J]. 液晶与显示, 2023,38(5):555-562. DOI: 10.37188/CJLCD.2023-0050.
HU Qi, XU Yun-hao, CHEN Si-yu, et al. Circularly polarized photodetector based on chiral polythiophene block copolymer[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(5):555-562. DOI: 10.37188/CJLCD.2023-0050.
手性有机半导体由于具有光谱可调和易于加工的优点,在小型化和集成化的圆偏振光检测中具有广泛的应用前景。本文通过控制手性异腈(PPI)的加入合成了聚(3-己基噻吩-嵌段-聚(苯基异氰))(P3HT,80,和P3HT,80,-PPI(L),30,)。实验结果证明了两种半导体聚合物被成功合成。测试了两种半导体聚合物的光学特性,发现嵌段聚合物P3HT,80,-PPI(L),30,具有手性光学活性。制备了基于有机场效应晶体管的圆偏振光探测器,研究器件对于450 nm的圆偏振光旋向的区分性能。实验结果表明,手性异腈(PPI)的加入虽然降低了P3HT,80,的电学性能,但引入了手性光学活性,使基于P3HT,80,-PPI(L),30,制备的器件能够区分圆偏振光的旋向,并且在450 nm的光电流不对称因子,g,res,达到了0.083。
Chiral organic semiconductors are promising for miniaturized and integrated circularly polarized light detection due to their spectral tunability and easy processing. In this paper, poly(3-hexylthiophene-block-poly(phenylisocyanide)) (P3HT,80, and P3HT,80,-PPI(L),30,) were synthesized by controlled incorporation of chiral isonitrile (PPI). The experimental results demonstrated that two semiconductor polymers were successfully synthesized. Furthermore, the optical properties of the two semiconductor polymers were tested and the block polymer P3HT,80,-PPI(L),30, was found to have chiral optical activity. A circularly polarized photodetector based on an organic field effect transistor was prepared to study the performance of the device for differentiating the spin direction of circularly polarized light at 450 nm. The experimental results indicated that the addition of chiral isonitrile (PPI) degraded the electrical properties of P3HT,80, but introduced chiral optical activity, enabling the devices based on P3HT,80,-PPI(L),30, to distinguish the spin direction of circularly polarized light, and the photocurrent asymmetry factor gres at 450 nm reached 0.083.
手性有机半导体嵌段共聚物手性光学活性有机薄膜晶体管圆偏振光探测器
chiral organic semiconductorsblock copolymerschiral optical activityorganic thin-film transistorscircularly polarized photodetectors
MORTAHEB F, OBERHOFER K, RIEMENSBERGER J, et al. Enantiospecific desorption triggered by circularly polarized light [J]. Angewandte Chemie International Edition, 2019, 58(44): 15685-15689. doi: 10.1002/anie.201906630http://dx.doi.org/10.1002/anie.201906630
NISHIZAWA N, AL-QADI B, KUCHIMARU T. Angular optimization for cancer identification with circularly polarized light [J]. Journal of Biophotonics, 2021, 14(3): e202000380. doi: 10.1002/JBIO.202000380http://dx.doi.org/10.1002/JBIO.202000380
QU A H, SUN M Z, KIM J Y, et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies [J]. Nature Biomedical Engineering, 2021, 5(1): 103-113. doi: 10.1038/s41551-020-00634-4http://dx.doi.org/10.1038/s41551-020-00634-4
YE H, PENG Y, SHANG X Y, et al. Self-powered visible-infrared polarization photodetection driven by ferroelectric photovoltaic effect in a dion-jacobson Hybrid perovskite [J]. Advanced Functional Materials, 2022, 32(24): 2200223. doi: 10.1002/adfm.202200223http://dx.doi.org/10.1002/adfm.202200223
WANG Z E, HAO A Y, XING P Y. Self-assembled helical structures of pyrene-conjugated amino acids for near-infrared chiroptical materials and chiral photothermal agents [J]. Chemistry of Materials, 2022, 34(3): 1302-1314. doi: 10.1021/acs.chemmater.1c03988http://dx.doi.org/10.1021/acs.chemmater.1c03988
WAN S P, LU H Y, LI M, et al. Advances in circularly polarized luminescent materials based on axially chiral compounds [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 50: 100500. doi: 10.1016/j.jphotochemrev.2022.100500http://dx.doi.org/10.1016/j.jphotochemrev.2022.100500
ZHU D L, JIANG W, MA Z T, et al. Organic donor-acceptor heterojunctions for high performance circularly polarized light detection [J]. Nature Communications, 2022, 13(1): 3454. doi: 10.1038/s41467-022-31186-7http://dx.doi.org/10.1038/s41467-022-31186-7
SHANG X B, WAN L, WANG L, et al. Emerging materials for circularly polarized light detection [J]. Journal of Materials Chemistry C, 2022, 10(7): 2400-2410. doi: 10.1039/d1tc04163khttp://dx.doi.org/10.1039/d1tc04163k
ZHAO Y J, DONG M Q, FENG J G, et al. Lead‐free chiral 2D double perovskite microwire arrays for circularly polarized light detection [J]. Advanced Optical Materials, 2022, 10(3): 2102227. doi: 10.1002/adom.202102227http://dx.doi.org/10.1002/adom.202102227
WANG L, XUE Y X, CUI M H, et al. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector [J]. Angewandte Chemie International Edition, 2020, 59(16): 6442-6450. doi: 10.1002/anie.201915912http://dx.doi.org/10.1002/anie.201915912
KIM N Y, KYHM J, HAN H, et al. Chiroptical-conjugated polymer/chiral small molecule hybrid thin films for circularly polarized light-detecting heterojunction devices [J]. Advanced Functional Materials, 2019, 29(11): 1808668. doi: 10.1002/adfm.201808668http://dx.doi.org/10.1002/adfm.201808668
YANG Y, COSTA R CDA, FUCHTER M J, et al. Circularly polarized light detection by a chiral organic semiconductor transistor [J]. Nature Photonics, 2013, 7(8): 634-638. doi: 10.1038/nphoton.2013.176http://dx.doi.org/10.1038/nphoton.2013.176
PENG Y, LIU X T, LI L N, et al. Realization of vis-NIR dual-modal circularly polarized light detection in chiral perovskite bulk crystals [J]. Journal of the American Chemical Society, 2021, 143(35): 14077-14082. doi: 10.1021/jacs.1c07183http://dx.doi.org/10.1021/jacs.1c07183
ZHANG C, WANG X H, QIU L Z. Circularly polarized photodetectors based on chiral materials: a review [J]. Frontiers in Chemistry, 2021, 9: 711488. doi: 10.3389/fchem.2021.711488http://dx.doi.org/10.3389/fchem.2021.711488
ZHANG X, XU Y Y, VALENZUELA C. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence [J]. Light: Science & Applications, 2022, 11(1): 223. doi: 10.1038/s41377-022-00913-6http://dx.doi.org/10.1038/s41377-022-00913-6
JIANG L L, XU C Y, WU X C, et al. Deep Ultraviolet light stimulated synaptic transistors based on poly(3-hexylthiophene) ultrathin films [J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11718-11726. doi: 10.1021/acsami.1c23986http://dx.doi.org/10.1021/acsami.1c23986
ZHANG L, SONG I, AHN J, et al. π-Extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection [J]. Nature Communications, 2021, 12(1): 142. doi: 10.1038/s41467-020-20390-yhttp://dx.doi.org/10.1038/s41467-020-20390-y
WARD M D, WADE J, SHI X Y, et al. Highly selective high‐speed circularly polarized photodiodes based on π-conjugated polymers [J]. Advanced Optical Materials, 2022, 10(2): 2101044. doi: 10.1002/adom.202101044http://dx.doi.org/10.1002/adom.202101044
CHENG J J, GE F, ZHANG C, et al. Enabling discrimination capability in an achiral F6BT-based organic semiconductor transistor via circularly polarized light induction [J]. Journal of Materials Chemistry C, 2020, 8(27): 9271-9275. doi: 10.1039/d0tc01704chttp://dx.doi.org/10.1039/d0tc01704c
CHEN H, HU Q, QIU L Z, et al. Solution-processed ultrathin semiconductor films for high-performance ammonia sensors [J]. Advanced Materials Interfaces, 2021, 8(20): 2100493. doi: 10.1002/admi.202100493http://dx.doi.org/10.1002/admi.202100493
XU L, WANG C, LI Y X, et al. Crystallization-driven asymmetric helical assembly of conjugated block copolymers and the aggregation induced white-light emission and circularly polarized luminescence [J]. Angewandte Chemie International Edition, 2020, 59(38): 16675-16682. doi: 10.1002/anie.202006561http://dx.doi.org/10.1002/anie.202006561
ZHANG C, XU C Y, CHEN C F, et al. Optically programmable circularly polarized photodetector [J]. ACS Nano, 2022, 16(8): 12452-12461. doi: 10.1021/acsnano.2c03746http://dx.doi.org/10.1021/acsnano.2c03746
0
浏览量
147
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构