1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100049
[ "刘颖(2000—),女,湖南邵阳人,硕士研究生,2020年于海南大学获得学士学位,主要从事深度学习与红外弱小检测方面的研究。E-mail:liuying200930@163.com" ]
[ "孙海江(1980—),男,吉林长春人,博士,研究员,2012年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事空间在轨图像处理与机器视觉技术方面的研究。E-mail:sunhaijiang@126.com" ]
扫 描 看 全 文
刘颖, 孙海江, 赵勇先. 基于注意力机制的复杂背景下红外弱小目标检测方法研究[J]. 液晶与显示, 2023,38(11):1455-1467.
LIU Ying, SUN Hai-jiang, ZHAO Yong-xian. Infrared dim-small target detection under complex background based on attention mechanism[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(11):1455-1467.
刘颖, 孙海江, 赵勇先. 基于注意力机制的复杂背景下红外弱小目标检测方法研究[J]. 液晶与显示, 2023,38(11):1455-1467. DOI: 10.37188/CJLCD.2023-0030.
LIU Ying, SUN Hai-jiang, ZHAO Yong-xian. Infrared dim-small target detection under complex background based on attention mechanism[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(11):1455-1467. DOI: 10.37188/CJLCD.2023-0030.
针对复杂场景下红外图像中弱小目标像素占比少、特征细节不明显致使目标特征提取困难、检测准确率低的问题,提出了一种基于注意力机制的复杂背景下红外弱小目标检测方法。该方法以YOLOv5网络为基础,设计SimAMC3注意力机制模块,优化网络的特征提取层;设计目标检测头,通过增加特征融合层来改变其开始进行特征提取的深度,获得新的弱小目标检测层,使浅层特征层更好地保留弱小目标的空间信息;改进预测框筛选方式,提高距离相近或重叠目标的检测精度。实验选取了两个SIRST红外弱小目标图像数据集,对其进行标注并训练。实验结果表明,改进后的算法与原YOLOv5算法相比,平均精度均值(mAP)分别提升了4.8%和7.1%,在不同复杂背景下均可有效检测出红外弱小目标,体现了良好的鲁棒性和适应性,可以有效应用于复杂背景中的红外弱小目标检测。
The small target in infrared images has fewer pixels and lack of obvious feature details in complex scenes, which make it difficult to extract target features and usually has low detection accuracy. This paper proposes an infrared small target detection method based on attention mechanism under complex background. Based on YOLOv5 (You Only Look Once) network, SimAMC3 attention mechanism module is designed to optimize the feature extraction layer of the network. The target detection head is designed by adding a feature fusion layer to change the depth of feature extraction, a new weak target detection layer can be obtained, so that the shallow feature layer can better retain the spatial information of the weak target. Finally, the screening method of prediction box is improved to increase the detection accuracy of objects with close distance or overlapping. In the experiment, two SIRST infrared dim-small target image datasets are selected to label and train them. The experimental results show that compared with the original YOLOv5 algorithm, the improved algorithm improves the mean average accuracy (mAP) by 4.8% and 7.1%. It can effectively detect infrared dim-small targets under different complex backgrounds, reflecting good robustness and adaptability, so it can be effectively applied to detect infrared dim-small target.
深度学习红外弱小目标目标检测注意力机制
deep learninginfrared dim-small targettarget detectionattention mechanism
ZHANG W, CONG M Y, WANG L P. Algorithms for optical weak small targets detection and tracking [C]. International Conference on Neural Networks and Signal Processing, 2003. Nanjing: IEEE, 2003: 643-647. doi: 10.1109/icnnsp.2003.1279357http://dx.doi.org/10.1109/icnnsp.2003.1279357
杨昳,徐长彬,马玉莹,等. 低信噪比下的红外弱小目标检测算法研究综述[J]. 激光与红外,2019,49(6):643-649. doi: 10.3969/j.issn.1001-5078.2019.06.001http://dx.doi.org/10.3969/j.issn.1001-5078.2019.06.001
YANG Y, XU C B, MA Y Y, et al. A review of infrared dim small target detection algorithms with low SNR [J]. Laser & Infrared, 2019, 49(6): 643-649. (in Chinese). doi: 10.3969/j.issn.1001-5078.2019.06.001http://dx.doi.org/10.3969/j.issn.1001-5078.2019.06.001
赵鹏鹏,李庶中,李迅,等. 融合视觉显著性和局部熵的红外弱小目标检测[J]. 中国光学,2022,15(2):267-275. doi: 10.37188/co.2021-0170http://dx.doi.org/10.37188/co.2021-0170
ZHAO P P, LI S Z, LI X, et al. Infrared dim small target detection based on visual saliency and local entropy [J]. Chinese Optics, 2022, 15(2): 267-275. (in Chinese). doi: 10.37188/co.2021-0170http://dx.doi.org/10.37188/co.2021-0170
吴言枫,王延杰,孙海江,等. 复杂动背景下的“低小慢”目标检测技术[J]. 中国光学,2019,12(4):853-865. doi: 10.3788/co.20191204.0853http://dx.doi.org/10.3788/co.20191204.0853
WU Y F, WANG Y J, SUN H J, et al. LSS-target detection in complex sky backgrounds [J]. Chinese Optics, 2019, 12(4): 853-865. (in Chinese). doi: 10.3788/co.20191204.0853http://dx.doi.org/10.3788/co.20191204.0853
DAI Y M, WU Y Q, ZHOU F, et al. Attentional local contrast networks for infrared small target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813-9824. doi: 10.1109/tgrs.2020.3044958http://dx.doi.org/10.1109/tgrs.2020.3044958
侯旺,孙晓亮,尚洋,等. 红外弱小目标检测技术研究现状与发展趋势[J]. 红外技术,2015,37(1):1-10. doi: 10.11846/j.issn.1001_8891.201501001http://dx.doi.org/10.11846/j.issn.1001_8891.201501001
HOU W, SUN X L, SHANG Y, et al. Present state and perspectives of small infrared targets detection technology [J]. Infrared Technology, 2015, 37(1): 1-10. (in Chinese). doi: 10.11846/j.issn.1001_8891.201501001http://dx.doi.org/10.11846/j.issn.1001_8891.201501001
ZUO C, QIAN J M, FENG S J, et al. Deep learning in optical metrology: a review [J]. Light: Science &Applications, 2022, 11(1): 39. doi: 10.1038/s41377-022-00714-xhttp://dx.doi.org/10.1038/s41377-022-00714-x
SITU G H. Deep holography [J]. Light: Advanced Manufacturing, 2022, 3(2): 278-300. doi: 10.37188/lam.2022.013http://dx.doi.org/10.37188/lam.2022.013
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587. doi: 10.1109/cvpr.2014.81http://dx.doi.org/10.1109/cvpr.2014.81
GIRSHICK R. Fast R-CNN [C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 1440-1448. doi: 10.1109/iccv.2015.169http://dx.doi.org/10.1109/iccv.2015.169
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/tpami.2016.2577031http://dx.doi.org/10.1109/tpami.2016.2577031
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector [C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37. doi: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. doi: 10.1109/cvpr.2016.91http://dx.doi.org/10.1109/cvpr.2016.91
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 6517-6525. doi: 10.1109/cvpr.2017.690http://dx.doi.org/10.1109/cvpr.2017.690
REDMON J, FARHADI A. YOLOv3: an incremental improvement [J/OL]. arXiv, 2018: 1804.02767. doi: 10.1109/cvpr.2017.690http://dx.doi.org/10.1109/cvpr.2017.690
WU T H, WANG T W, LIU Y Q. Real-time vehicle and distance detection based on improved YOLO v5 network [C]. 2021 3rd World Symposium on Artificial Intelligence (WSAI). Guangzhou: IEEE, 2021: 24-28. doi: 10.1109/wsai51899.2021.9486316http://dx.doi.org/10.1109/wsai51899.2021.9486316
SONG X Y, GU W. Multi-objective real-time vehicle detection method based on YOLOv5 [C]. 2021 International Symposium on Artificial Intelligence and its Application on Media (ISAIAM). Xi'an: IEEE, 2021: 142-145. doi: 10.1109/isaiam53259.2021.00037http://dx.doi.org/10.1109/isaiam53259.2021.00037
黄龙飞. 上下文信息在目标检测算法中的应用[J]. 电子世界,2020(2):43-44.
HUANG L F. Application of context information in target detection algorithm [J]. Electronics World, 2020(2): 43-44. (in Chinese)
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12993-13000. doi: 10.1609/aaai.v34i07.6999http://dx.doi.org/10.1609/aaai.v34i07.6999
YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks [C]//Proceedings of the 38th International Conference on Machine Learning. PMLR, 2021: 11863-11874. doi: 10.1007/978-3-030-86362-3_14http://dx.doi.org/10.1007/978-3-030-86362-3_14
WEBB B S, DHRUV N T, SOLOMON S G, et al. Early and late mechanisms of surround suppression in striate cortex of macaque [J]. Journal of Neuroscience, 2005, 25(50): 11666-11675. doi: 10.1523/jneurosci.3414-05.2005http://dx.doi.org/10.1523/jneurosci.3414-05.2005
DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection [C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa: IEEE, 2021: 949-958. doi: 10.1109/wacv48630.2021.00099http://dx.doi.org/10.1109/wacv48630.2021.00099
LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection [J]. IEEE Transactions on Image Processing, 2023, 32: 1745-1758. doi: 10.1109/tip.2022.3199107http://dx.doi.org/10.1109/tip.2022.3199107
CHEN C L P, LI H, WEI Y T, et al. A local contrast method for small infrared target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581. doi: 10.1109/tgrs.2013.2242477http://dx.doi.org/10.1109/tgrs.2013.2242477
GAO C Q, MENG D Y, WANG Y T, et al. Infrared patch-image model for small target detection in a single image [J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009. doi: 10.1109/tip.2013.2281420http://dx.doi.org/10.1109/tip.2013.2281420
0
浏览量
16
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构