浏览全部资源
扫码关注微信
北京理工大学 光电学院, 北京 100081
[ "杨泊钰(2000—),男,山西大同人,硕士研究生,2021年于合肥工业大学获得学士学位,主要从事计算成像方面的研究。E-mail:yangboyu1211@163.com" ]
[ "柯钧(1974—),女,四川浦江人,博士,副教授,2010年于美国亚利桑那大学获得博士学位,主要从事计算成像方面的研究。E-mail:jke@bit.edu.cn" ]
收稿日期:2023-01-31,
修回日期:2023-03-16,
纸质出版日期:2023-06-05
移动端阅览
杨泊钰, 柯钧. 透过薄散射介质的目标事件分类方法[J]. 液晶与显示, 2023,38(6):770-777.
YANG Bo-yu, KE Jun. Target event classification method through thinly scattered media[J]. Chinese journal of liquid crystals and displays, 2023, 38(6): 770-777.
杨泊钰, 柯钧. 透过薄散射介质的目标事件分类方法[J]. 液晶与显示, 2023,38(6):770-777. DOI: 10.37188/CJLCD.2023-0027.
YANG Bo-yu, KE Jun. Target event classification method through thinly scattered media[J]. Chinese journal of liquid crystals and displays, 2023, 38(6): 770-777. DOI: 10.37188/CJLCD.2023-0027.
现有的通过散射介质的目标分析主要针对静止目标,同时,环境或外部亮度条件对目标分析结果有着至关重要的影响,这就对图像采集设备的动态范围、时间分辨率等性能提出了极高要求。事件相机由于其高动态范围、高时间分辨率与低延迟等特点为应对上述问题提供了新的解决思路。本文针对低照度情况下运动目标透过薄散射介质探测效果差的问题,利用事件相机开展了透过薄散射介质的目标探测的研究。采用V2E算法利用灰度散斑制备“事件散斑”数据集,并采用ResNet分类网络进行目标分类,获得了94.27%的十分类精确率。实验结果表明,使用事件流在分析通过散射介质的目标信息方面有着巨大的发展潜力。
The existing target analysis through scattering media is mainly aimed at stationary targets. At the same time, ambient or external luminance conditions have a critical impact on the target analysis results. This paper puts forward extremely high requirements for the dynamic range and time resolution of the image acquisition equipment. Due to its high dynamic range, high temporal resolution and low latency, event cameras provide new solutions to the above problems. Aiming at the problem of poor detection effect of moving targets through thin scattering medium under low illumination, event camera is adopted to carry out target detection research through thin scattering medium. V2E network is used to prepare the “event speckle” dataset by grayscale speckle, and ResNet classification network is adopted for target classification. The ten-class accuracy of 94.27% is obtained. Experimental results show that the applicaiton of event streams has great potential for analyzing target information passing through scattering media.
BABCOCK H W . The possibility of compensating astronomical seeing [J]. Publications of the Astronomical Society of the Pacific , 1953 , 65 ( 386 ): 229 - 236 . doi: 10.1086/126606 http://dx.doi.org/10.1086/126606
HORSTMEYER R , RUAN HW , YANG C . Guidestar-assisted wavefront-shaping methods for focusing light into . doi: 10.1038/nphoton.2015.140 http://dx.doi.org/10.1038/nphoton.2015.140
biological tissue [J]. Nature Photonics , 2015 , 9 ( 9 ): 563 - 571 . doi: 10.1038/nphoton.2015.140 http://dx.doi.org/10.1038/nphoton.2015.140
POPOFF S , LEROSEY G , FINK M , et al . Image transmission through an opaque material [J]. Nature Communications , 2010 , 1 : 81 . doi: 10.1038/ncomms1078 http://dx.doi.org/10.1038/ncomms1078
KATZ O , SMALL E , SILBERBERG Y . Looking around corners and through thin turbid layers in real time with scattered incoherent light [J]. Nature Photonics , 2012 , 6 ( 8 ): 549 - 553 . doi: 10.1038/nphoton.2012.150 http://dx.doi.org/10.1038/nphoton.2012.150
朱磊 , 邵晓鹏 . 散射成像技术的研究进展 [J]. 光学学报 , 2020 , 40 ( 1 ): 0111005 . doi: 10.3788/aos202040.0111005 http://dx.doi.org/10.3788/aos202040.0111005
ZHU L , SHAO X P . Research progress on scattering imaging technology [J]. Acta Optica Sinica , 2020 , 40 ( 1 ): 0111005 . (in Chinese) . doi: 10.3788/aos202040.0111005 http://dx.doi.org/10.3788/aos202040.0111005
孙存志 , 陈子阳 , 蒲继雄 . 调制散射光束的振幅实现聚焦 [J]. 光学学报 , 2014 , 34 ( 8 ): 0829001 . doi: 10.3788/aos201434.0829001 http://dx.doi.org/10.3788/aos201434.0829001
SUN C Z , CHEN Z Y , PU J X . Modulating the amplitude of scattering light for focusing [J]. Acta Optica Sinica , 2014 , 34 ( 8 ): 0829001 . (in Chinese) . doi: 10.3788/aos201434.0829001 http://dx.doi.org/10.3788/aos201434.0829001
BERTOLOTTI J , VANPUTTEN E G , BLUM C , et al . Non-invasive imaging through opaque scattering layers [J]. Nature , 2012 , 491 ( 7423 ): 232 - 234 . doi: 10.1038/nature11578 http://dx.doi.org/10.1038/nature11578
KATZ O , HEIDMANN P , FINK M , et al . Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations [J]. Nature Photonics , 2014 , 8 ( 10 ): 784 - 790 . doi: 10.1038/nphoton.2014.189 http://dx.doi.org/10.1038/nphoton.2014.189
AMITONOVA L V , MOSK A P , PINKSE P W H . Rotational memory effect of a multimode fiber [J]. Optics Express , 2015 , 23 ( 16 ): 20569 - 20575 . doi: 10.1364/oe.23.020569 http://dx.doi.org/10.1364/oe.23.020569
谢向生 , 刘忆琨 , 梁浩文 , 等 . 散斑相关成像:从点扩展函数到光场全要素 [J]. 光学学报 , 2020 , 40 ( 1 ): 0111004 . doi: 10.3788/aos202040.0111004 http://dx.doi.org/10.3788/aos202040.0111004
XIE X S , LIU Y K , ZLIANG H W , et al . Speckle correlation imaging: from point spread functions to light field plenoptics [J]. Acta Optica Sinica , 2020 , 40 ( 1 ): 0111004 . (in Chinese) . doi: 10.3788/aos202040.0111004 http://dx.doi.org/10.3788/aos202040.0111004
JUDKEWITZ B , HORSTMEYER R , VELLEKOOP I M , et al . Translation correlations in anisotropically scattering media [J]. Nature Physics , 2015 , 11 ( 8 ): 684 - 689 . doi: 10.1038/nphys3373 http://dx.doi.org/10.1038/nphys3373
LI Y Z , XUE Y J , TIAN L . Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media [J]. Optica , 2018 , 5 ( 10 ): 1181 - 1190 . doi: 10.1364/optica.5.001181 http://dx.doi.org/10.1364/optica.5.001181
郑珊珊 , 杨婉琴 , 司徒国海 . 计算光学成像在散射中的应用 [J]. 红外与激光工程 , 2019 , 48 ( 6 ): 0603005 . doi: 10.3788/irla201948.0603005 http://dx.doi.org/10.3788/irla201948.0603005
ZHENG S S , YANG W Q , SITU G H . Application of computational optical imaging in scattering [J]. Infrared and Laser Engineering , 2019 , 48 ( 6 ): 0603005 . (in Chinese) . doi: 10.3788/irla201948.0603005 http://dx.doi.org/10.3788/irla201948.0603005
FENG S C , KANE C , LEE P A , et al . Correlations and fluctuations of coherent wave transmission through disordered media [J]. Physical Review Letters , 1988 , 61 ( 7 ): 834 - 837 . doi: 10.1103/physrevlett.61.834 http://dx.doi.org/10.1103/physrevlett.61.834
FREUND I , ROSENBLUH M , FENG S C . Memory effects in propagation of optical waves through disordered media [J]. Physical Review Letters , 1988 , 61 ( 20 ): 2328 - 2331 . doi: 10.1103/physrevlett.61.2328 http://dx.doi.org/10.1103/physrevlett.61.2328
LICHTSTEINER P , POSCH C , DELBRUCK T . A 128×128 120 dB 15 μs latency asynchronous temporal contrast vision sensor [J]. IEEE Journal of Solid-State Circuits , 2008 , 43 ( 2 ): 566 - 576 . doi: 10.1109/jssc.2007.914337 http://dx.doi.org/10.1109/jssc.2007.914337
LICHTSTEINER P , DELBRUCK T . A 64 × 64 aer logarithmic temporal derivative silicon retina [C]// Proceedings of the Research in Microelectronics and Electronics . Lausanne, Switzerland : IEEE , 2005: 202 - 205 . doi: 10.1109/rme.2005.1542972 http://dx.doi.org/10.1109/rme.2005.1542972
LICHTSTEINER P , POSCH C , DELBRUCK T . A 64×64 aer logarithmic temporal derivative silicon retina [J]. Research in Microelectronics and Electronics , 2006 : 2060 - 2069 .
PIATKOWSKA E , BELBACHIR A N , SCHRAML S , et al . Spatiotemporal multiple persons tracking using dynamic vision sensor [C]// Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops . Providence : IEEE , 2012 : 35 - 40 . doi: 10.1109/cvprw.2012.6238892 http://dx.doi.org/10.1109/cvprw.2012.6238892
ZHU A Z , YUAN L Z , CHANEY K , et al . EV-FlowNet: self-supervised optical flow estimation for event-based cameras [J/OL]. arXiv , 2018 : 1802 . 06898 . doi: 10.15607/rss.2018.xiv.062 http://dx.doi.org/10.15607/rss.2018.xiv.062
Kim H , Handa A , Benosman R , et al . Simultaneous mosaicing and tracking with an event camera [C]// Proceedings British Machine Vision Conference . Nottingham : BMVA Press , 2014 . doi: 10.5244/c.28.26 http://dx.doi.org/10.5244/c.28.26
GE Z , ZHANG P , GAO Y Z , et al . Lens-free motion analysis via neuromorphic laser speckle imaging [J]. Optics Express , 2022 , 30 ( 2 ): 2206 - 2218 . doi: 10.1364/oe.444948 http://dx.doi.org/10.1364/oe.444948
ZHOU G , GAO Y Z , LAM E Y . Event-based laser speckle correlation for micro motion estimation [J]. Optics Letters , 2021 , 46 ( 16 ): 3885 - 3888 . doi: 10.1364/ol.430419 http://dx.doi.org/10.1364/ol.430419
Various Contributors . Event-based vision resources [EB/OL]. https://github.com/uzh-rpg/event-based_vision_resources https://github.com/uzh-rpg/event-based_vision_resources .
KATZ M L , NIKOLIC K , DELBRUCK T . Live demonstration: Behavioural emulation of event-based vision sensors [C]// Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS) . Seoul : IEEE , 2012 : 736 - 740 . doi: 10.1109/iscas.2012.6272143 http://dx.doi.org/10.1109/iscas.2012.6272143
REBECQ H , GEHRIG D , SCARAMUZZA D . ESIM: an open event camera simulator [C]// Proceedings of the 2nd Conference on Robot Learning . Zürich : PMLR , 2018 .
GEHRIG D , GEHRIG M , HIDALGO-CARRIÓ J , et al . Video to events: Recycling video datasets for event cameras [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Seattle : IEEE , 2020 : 3583 - 3592 . doi: 10.1109/cvpr42600.2020.00364 http://dx.doi.org/10.1109/cvpr42600.2020.00364
HU Y H , LIU S C , DELBRUCK T . V2E: from video frames to realistic DVS events [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) . Nashville : IEEE , 2021 : 1312 - 1321 . doi: 10.1109/cvprw53098.2021.00144 http://dx.doi.org/10.1109/cvprw53098.2021.00144
JIANG H Z , SUN D Q , JAMPANI V , et al . Super SloMo: high quality estimation of multiple intermediate frames for video interpolation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Salt Lake City : IEEE , 2018 : 9000 - 9008 . doi: 10.1109/cvpr.2018.00938 http://dx.doi.org/10.1109/cvpr.2018.00938
SU S C , DELBRACIO M , WANG J , et al . Deep video deblurring for hand-held cameras [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Honolulu : IEEE , 2017 : 237 - 246 . doi: 10.1109/cvpr.2017.33 http://dx.doi.org/10.1109/cvpr.2017.33
KATZ M L , LUTTERBECK C , NIKOLIC K . An implementation of magnocellular pathways in event-based retinomorphic systems [C]// Proceedings of the 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS) . Seoul : IEEE , 2012 : 17 - 20 . doi: 10.1109/biocas.2012.6418480 http://dx.doi.org/10.1109/biocas.2012.6418480
REBECQ H , HORSTSCHAEFER T , GALLEGO G , et al . EVO: a geometric approach to event-based 6-DOF parallel tracking and mapping in real time [J]. IEEE Robotics and Automation Letters , 2017 , 2 ( 2 ): 593 - 600 . doi: 10.1109/lra.2016.2645143 http://dx.doi.org/10.1109/lra.2016.2645143
GEHRIG D , REBECQ H , GALLEGO G , et al . EKLT: Asynchronous photometric feature tracking using events and frames [J]. International Journal of Computer Vision , 2018 , 128 ( 3 ): 601 - 618 .
BARDOW P , DAVISON A J , LEUTENEGGER S . Simultaneous optical flow and intensity estimation from an event camera [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Las Vegas : IEEE , 2016 : 884 - 892 . doi: 10.1109/cvpr.2016.102 http://dx.doi.org/10.1109/cvpr.2016.102
WANG I , MOSTAFAVI I S M , HO Y S , et al . Event-based high dynamic range image and very high frame rate video generation using conditional generative adversarial networks [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Long Beach : IEEE , 2019 : 10073 - 10082 . doi: 10.1109/cvpr.2019.01032 http://dx.doi.org/10.1109/cvpr.2019.01032
BENOSMAN R , CLERCQ C , LAGORCE X , et al . Event-based visual flow [J]. IEEE Transactions on Neural Networks and Learning Systems , 2014 , 25 ( 2 ): 407 - 417 . doi: 10.1109/tnnls.2013.2273537 http://dx.doi.org/10.1109/tnnls.2013.2273537
SEKIKAWA Y , HARA K , SAITO H . EventNet: asynchronous recursive event processing [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Long Beach : IEEE , 2019 : 3882 - 3891 . doi: 10.1109/cvpr.2019.00401 http://dx.doi.org/10.1109/cvpr.2019.00401
REBECQ H , RANFTL R , KOLTUN V , et al . Events-To-Video: bringing modern computer vision to event cameras [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Long Beach : IEEE , 2019 : 3852 - 3861 . doi: 10.1109/cvpr.2019.00398 http://dx.doi.org/10.1109/cvpr.2019.00398
ZHU A Z , YUAN L Z , CHANEY K , et al . Unsupervised event-based optical flow using motion compensation [C]// Proceedings of the European Conference on Computer Vision . Munich : Springer , 2018 . doi: 10.1007/978-3-030-11024-6_54 http://dx.doi.org/10.1007/978-3-030-11024-6_54
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Las Vegas : IEEE , 2016 : 770 - 778 . doi: 10.1109/cvpr.2016.90 http://dx.doi.org/10.1109/cvpr.2016.90
National Institute of Standards and Technology . Mixed national institute of standards and technology database http://yann.lecun.com/exdb/mnist/ http://yann.lecun.com/exdb/mnist/ . doi: 10.6028/nist.sp.732 http://dx.doi.org/10.6028/nist.sp.732
ZUO C , CHEN Q . Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks [J]. Light: Science & Applications , 2022 , 11 ( 1 ): 208 . doi: 10.1038/s41377-022-00903-8 http://dx.doi.org/10.1038/s41377-022-00903-8
0
浏览量
167
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构