1.大连海事大学 理学院, 辽宁 大连 116026
[ "潘国彬(1998—),男,辽宁营口人,硕士研究生,2020年于大连海事大学获得学士学位,主要从事光学与显示技术方面的研究。E-mail:916652013@qq.com" ]
[ "于涛(1971—),男,黑龙江七台河人,博士,教授,2004年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学与显示技术方面的研究。E-mail:yutao@dlmu.edu.cn" ]
扫 描 看 全 文
潘国彬, 于涛, 张广翔, 等. 可调偶次非球面液体透镜和变焦距光学系统的仿真研究[J]. 液晶与显示, 2023,38(5):574-581.
PAN Guo-bin, YU Tao, ZHANG Guang-xiang, et al. Simulation of adjustable even aspheric liquid lens and zoom optical system[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(5):574-581.
潘国彬, 于涛, 张广翔, 等. 可调偶次非球面液体透镜和变焦距光学系统的仿真研究[J]. 液晶与显示, 2023,38(5):574-581. DOI: 10.37188/CJLCD.2023-0023.
PAN Guo-bin, YU Tao, ZHANG Guang-xiang, et al. Simulation of adjustable even aspheric liquid lens and zoom optical system[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(5):574-581. DOI: 10.37188/CJLCD.2023-0023.
本文提出了一种结合电润湿效应和静电力共同作用的可调偶次非球面液体透镜,利用Comsol Multiphysics软件对非球面液体透镜进行仿真研究,四圆环电极产生的静电力可以灵活地调整液体透镜的面型。利用该液体透镜设计了变焦光学系统,采用Zemax软件获得优化校正像差的非球面方程。作为可调偶次非球面液体透镜的目标面型,调整电润湿电极和四圆环电极上的电压,仿真得到的非球面与目标非球面间的光程均方根误差小于,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43258181&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43258187&type=,5.67266655,2.79399991,,满足Marechal判据。在26~30 mm焦距范围内,与环形电极电压为0 V的液体透镜系统相比,环形电极施加调节电压的可调偶次非球面液体透镜变焦距系统有良好的成像效果。
A kind of adjustable even aspheric liquid lens combined with electric wetting effect and electrostatic force is proposed. The aspheric liquid lens is simulated by using Comsol Multiphysics software. The electrostatic force generated by four circular electrodes can flexibly adjust the surface shape of the liquid lens. The zoom optical system is designed by using the liquid lens. The aspheric equation for optimizing and correcting the aberration is obtained by using the Zemax software. As the target surface of the adjustable even aspheric liquid lens, the voltage on the electrowetting electrode and the four-ring electrode is adjusted. The simulated root mean square error of the optical path between the aspheric surface and the target aspheric surface is less than ,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43258202&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43258199&type=,6.60400009,3.30200005,, which meets the Marechal criterion. In the range of 26~30 mm focal length, compared with the aspheric liquid lens system with the ring electrode voltage of 0 V, the adjustable even aspheric liquid lens zoom system with the ring electrode voltage has good imaging effect.
偶次非球面液体透镜电润湿静电力变焦光学系统
even aspheric liquid lenselectric wettingstatic electricityzoom optical system
LI Y L, LI N N, WANG D, et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size [J]. Light: Science & Applications, 2022, 11(1): 188. doi: 10.1038/s41377-022-00880-yhttp://dx.doi.org/10.1038/s41377-022-00880-y
储繁,王琼华.基于聚合物突起的液晶透镜阵列[J].液晶与显示,2023,38(1):10-17. doi: 10.37188/cjlcd.2022-0065http://dx.doi.org/10.37188/cjlcd.2022-0065
CHU F, WANG Q H. Liquid crystal lens array based on polymer protrusion [J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(1): 10-17. (in Chinese). doi: 10.37188/cjlcd.2022-0065http://dx.doi.org/10.37188/cjlcd.2022-0065
黄翔,林四英,谷丹丹,等.液体变焦镜头的研究进展[J].中国光学,2019,12(6):1179-1194. doi: 10.3788/co.20191206.1179http://dx.doi.org/10.3788/co.20191206.1179
HUANG X, LIN S Y, GU D D, et al. Review on progress of variable-focus liquid lens [J]. Chinese Optics, 2019, 12(6): 1179-1194. (in Chinese). doi: 10.3788/co.20191206.1179http://dx.doi.org/10.3788/co.20191206.1179
LIMA N C, MISHRA K, MUGELE F. Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses [J]. Optics Express, 2017, 25(6): 6700-6711. doi: 10.1364/oe.25.006700http://dx.doi.org/10.1364/oe.25.006700
MISHRA K, NARAYANAN A, MUGELE F. Design and wavefront characterization of an electrically tunable aspherical optofluidic lens [J]. Optics Express, 2019, 27(13): 17601-17609. doi: 10.1364/oe.27.017601http://dx.doi.org/10.1364/oe.27.017601
ZOHRABI M, CORMACK R H, MCCULLOUGH C, et al. Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices [J]. Optics Express, 2017, 25(25): 31451-31461. doi: 10.1364/oe.25.031451http://dx.doi.org/10.1364/oe.25.031451
XU M, LIU Y T, YUAN Y, et al. Variable-focus liquid lens based on electrically responsive fluid [J]. Optics Letters, 2022, 47(3): 509-512. doi: 10.1364/ol.447182http://dx.doi.org/10.1364/ol.447182
REN H W, XIANYU H Q, XU S, et al. Adaptive dielectric liquid lens [J]. Optics Express, 2008, 16(19): 14954-14960. doi: 10.1364/oe.16.014954http://dx.doi.org/10.1364/oe.16.014954
VERHEIJEN H J J, PRINS M W J. Contact angles and wetting velocity measured electrically [J]. Review of Scientific Instruments, 1999, 70(9): 3668-3673. doi: 10.1063/1.1149976http://dx.doi.org/10.1063/1.1149976
JACKSON J D. Classical Electrodynamics [M]. New York: Wiley, 1975.
COMSOL.电聚结分离[EB/OL].http://cn.comsol.com/model/separation-through-electrocoalescence-8592http://cn.comsol.com/model/separation-through-electrocoalescence-8592.
COMSOL.电润湿透镜[EB/OL].http://cn.comsol.com/model/electrowetting-lens-10029http://cn.comsol.com/model/electrowetting-lens-10029.
迟泽英,陈文建.应用光学与光学设计基础[M].南京:东南大学出版社,2008.
CHI Z Y, CHEN W J. Applied Optics and Elements of Optical Design [M]. Nanjing: Southeast University Press, 2008. (in Chinese)
0
浏览量
42
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构