1.东南大学 生物科学与医学工程学院, 江苏 南京 210096
[ "杨尚鹏(2000—),男,山东滕州人,硕士研究生,2022年于东南大学获得学士学位,主要从事图像处理与计算机视觉方面的研究。E-mail:yang_sp@seu.edu.cn" ]
[ "周平(1980—),男,辽宁凌源人,博士,副教授,2007年于中国科学技术大学获得博士学位,主要从事三维成像、信号与图像处理方面的研究。E-mail:capzhou@163.com" ]
扫 描 看 全 文
杨尚鹏, 许成才, 颉一凡, 等. 光场成像中元素图像的不失真条件[J]. 液晶与显示, 2023,38(6):829-834.
YANG Shang-peng, XU Cheng-cai, JIE Yi-fan, et al. Distortionless condition for microlens images in light field imaging[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(6):829-834.
杨尚鹏, 许成才, 颉一凡, 等. 光场成像中元素图像的不失真条件[J]. 液晶与显示, 2023,38(6):829-834. DOI: 10.37188/CJLCD.2023-0021.
YANG Shang-peng, XU Cheng-cai, JIE Yi-fan, et al. Distortionless condition for microlens images in light field imaging[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(6):829-834. DOI: 10.37188/CJLCD.2023-0021.
在实际应用中,受应用环境狭小空间的限制,可能出现元素图像偏移与部分缺失等失真问题,进而影响光场图像的解码、深度估计与三维成像等应用。为了研究该问题,本文分析并提出了元素图像不失真条件。将环境空间的约束抽象为主透镜物空间的孔阑,根据孔阑尺寸、位置与元素图像之间的关系,将光场成像分为3种情况分别进行理论研究,并设计了元素图像中心偏移、孔阑等差移动10 mm实验进行验证。实验结果表明,元素图像中心偏移的实验结果与理论分析的相关性高于99%,孔阑等差移动测量值为(9.97±1.5) mm,验证了本文元素图像不失真条件的正确性。该不失真条件可用于指导光场成像系统设计,定量分析元素图像失真参数。
The microlens image may serve deviations from the true projected centers and shape irregularities when the light field imaging system is used in narrow space. This paper analyzed and proposed the distortionless condition for microlens images. The narrow space is modeled as an additional aperture in the light field imaging system, whose pupil size and position in the light field imaging system were related to the distortionless condition. The distortionless condition was studied from three aspects and the experiments were designed including microlens image deviation and arithmetic aperture-shift. Experimental results show the correlation coefficient between the experimental and theoretical result is more than 99%, and aperture-shift measurement is (9.97±1.5) mm. The distortionless condition is proved by experimental results, which can be used to guide the design of light field imaging system and analyze the microlens image distortion parameters quantitatively.
光场成像孔阑元素图像失真元素图像偏移
light field imagingstop aperturemicrolens image distortionmicrolens image deviation
TIAN L, WALLER L. 3D intensity and phase imaging from light field measurements in an LED array microscope [J]. Optica, 2015, 2(2): 104-111. doi: 10.1364/optica.2.000104http://dx.doi.org/10.1364/optica.2.000104
XIONG B, ZHU T Y, XIANG Y H, et al. Mirror-enhanced scanning light-field microscopy for long-term high-speed 3D imaging with isotropic resolution [J]. Light: Science & Applications, 2021, 10: 227. doi: 10.1038/s41377-021-00665-9http://dx.doi.org/10.1038/s41377-021-00665-9
翟家振,施汝恒,孔令杰.光场显微镜及其在三维生物成像中的应用[J].物理与工程,2022,32(2):147-150. doi: 10.3969/j.issn.1009-7104.2022.02.025http://dx.doi.org/10.3969/j.issn.1009-7104.2022.02.025
ZHAI J Z, SHI R H, KONG L J. Light field microscope and its applications in 3D biomedical imaging [J]. Physics and Engineering, 2022, 32(2): 147-150. (in Chinese). doi: 10.3969/j.issn.1009-7104.2022.02.025http://dx.doi.org/10.3969/j.issn.1009-7104.2022.02.025
张石磊,崔宇,邢慕增,等.光场成像目标测距技术[J].中国光学,2020,13(6):1332-1342. doi: 10.37188/co.2020-0043http://dx.doi.org/10.37188/co.2020-0043
ZHANG S L, CUI Y, XING M Z, et al. Light field imaging target ranging technology [J]. Chinese Optics, 2020, 13(6): 1332-1342. (in Chinese). doi: 10.37188/co.2020-0043http://dx.doi.org/10.37188/co.2020-0043
LEVOY M, HANRAHAN P. Light field rendering [C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New Orleans, USA: ACM, 1996: 31-42. doi: 10.1145/237170.237199http://dx.doi.org/10.1145/237170.237199
WILBURN B, JOSHI N, VAISH V, et al. High performance imaging using large camera arrays [J]. ACM Transactions on Graphics, 2005, 24(3): 765-776. doi: 10.1145/1073204.1073259http://dx.doi.org/10.1145/1073204.1073259
LI K, DAI Q H, XU W L, et al. Temporal-dense dynamic 3-D reconstruction with low frame rate cameras [J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(5): 447-459. doi: 10.1109/jstsp.2012.2194475http://dx.doi.org/10.1109/jstsp.2012.2194475
NG R. Digital light field photography [D]. Stanford: Stanford University, 2006. doi: 10.1364/iodc.2006.wb2http://dx.doi.org/10.1364/iodc.2006.wb2
LEVOY M, ZHANG Z, MCDOWALL I. Recording and controlling the 4D light field in a microscope using microlens arrays [J]. Journal of Microscopy, 2009, 235(2): 144-162. doi: 10.1111/j.1365-2818.2009.03195.xhttp://dx.doi.org/10.1111/j.1365-2818.2009.03195.x
郭正华.基于微透镜阵列光场成像的深度反演技术研究[D].成都:中国科学院大学(中国科学院光电技术研究所),2020.
GUO Z H. Research on depth retrieval for lenslet based light field imaging [D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020. (in Chinese)
DANSEREAU D G, PIZARRO O, WILLIAMS S B. Decoding, calibration and rectification for lenselet-based plenoptic cameras [C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013. doi: 10.1109/cvpr.2013.137http://dx.doi.org/10.1109/cvpr.2013.137
张旭,李晨.微透镜阵列式光场成像模型及其标定方法[J].光学学报,2014,34(12):1211005. doi: 10.3788/aos201434.1211005http://dx.doi.org/10.3788/aos201434.1211005
ZHANG X, LI C. Calibration and imaging model of light field camera with microlens array [J]. Acta Optica Sinica, 2014, 34(12): 1211005. (in Chinese). doi: 10.3788/aos201434.1211005http://dx.doi.org/10.3788/aos201434.1211005
HAHNE C, AGGOUN A. PlenoptiCam v1.0: a light-field imaging framework [J]. IEEE Transactions on Image Processing, 2021, 30: 6757-6771. doi: 10.1109/tip.2021.3095671http://dx.doi.org/10.1109/tip.2021.3095671
SCHAMBACH M, LEÓN F P. Microlens array grid estimation, light field decoding, and calibration [J]. IEEE Transactions on Computational Imaging, 2020, 6: 591-603. doi: 10.1109/tci.2020.2964257http://dx.doi.org/10.1109/tci.2020.2964257
蔡维嘉.光场相机标定算法研究[D].南京:东南大学,2020.
CAI W J. Research on calibration method for light field camera [D]. Nanjing: Southeast University, 2020. (in Chinese)
0
浏览量
29
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构