1.江南大学 理学院, 江苏 无锡 214122
2.光电对抗测试与评估技术重点实验室, 河南 洛阳 471003
3.江苏省轻工光电工程技术研究中心, 江苏 无锡 214122
[ "华晟骁(1997—),男,江苏无锡人,硕士研究生,2020年于南京理工大学紫金学院获得学士学位,主要从事压缩波前探测的研究。E-mail:6201205012@ jiangnan.edu.cn" ]
[ "胡立发(1974—),男,湖北武汉人,博士,研究员,2003年于东北大学获得博士学位,主要从事液晶和自适应光学的研究。E-mail:hulifa@jiangnan.edu.cn" ]
扫 描 看 全 文
华晟骁, 胡启立, 冯佳濠, 等. 基于深度神经网络的大气湍流压缩波前探测[J]. 液晶与显示, 2023,38(6):789-797.
HUA Sheng-xiao, HU Qi-li, FENG Jia-hao, et al. Compressed wavefront sensing based on deep neural network for atmospheric turbulence[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(6):789-797.
华晟骁, 胡启立, 冯佳濠, 等. 基于深度神经网络的大气湍流压缩波前探测[J]. 液晶与显示, 2023,38(6):789-797. DOI: 10.37188/CJLCD.2023-0011.
HUA Sheng-xiao, HU Qi-li, FENG Jia-hao, et al. Compressed wavefront sensing based on deep neural network for atmospheric turbulence[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(6):789-797. DOI: 10.37188/CJLCD.2023-0011.
压缩感知技术用于光学波前测量时,常规的斜率恢复方法精度较低,难以测量大气湍流引起的复杂波前,本文利用深度神经网络进行斜率恢复,提高斜率恢复精度,从而提高压缩波前探测方法测量大气湍流波前的精度。传统的压缩波前探测方法在稀疏化过程中忽略相对较小的斜率值,导致波前测量误差的增加。为了快速测量大气湍流引起的复杂波前,本文提出了一种深度神经网络,可以高精度地恢复斜率,从而提高了波前重构的精度。在压缩比为0.1~0.9情况下,基于深度神经网络的压缩波前探测算法(DNNCWS)的波前重构误差PV优于0.014 μm,算法的运行时间为4.4 ms。在暗弱星等情况下,残差波前的峰谷值(PV)优于0.011 μm。模拟结果表明,DNNCWS具有良好的抗噪声性能。深度神经网络DNNCWS提高了压缩波前的探测精度,可以用于测量大气湍流引起的复杂像差,还可用于其他自适应光学应用,如激光通信和视网膜成像。
When the compressive sensoring is used in wavefront measurement, classic methods of slopes’ restoration has a relatively low precision, which make it difficult to measure the atmospheric turbulence wavefront. In the paper, a deep neural network is presented to improve the slopes’ restoration precision. The traditional compressive sensing technology does not take into account the relatively small slopes, which increases the wavefront measurement errors. To measure the complex wavefront induced by atmospheric turbulence with a high speed, the paper presents an improved deep neural network to restore the slopes from sparse ones with high precision, which improves the precision of wavefront reconstruction. When the compression ratio is ranged from 0.1 to 0.9, the wavefront error PV (Peak to valley) of the compressed wavefront detection algorithm based on depth neural network (DNNCWS) proposed in this paper is better than 0.014 μm, and the running time of the algorithm is 4.4 ms. In the case of low signal-to-noise ratio, the residual wavefront PV is better than 0.011 μm. In addition, the simulation results indicate that it has good anti-noise performance. The DNNCWS improves the detection accuracy of compressive sensing and overcomes the problem of low accuracy for complex aberration induced by atmospheric turbulence. It can also be used in other adaptive optical applications, such as laser communication and retinal imaging.
压缩波前探测自适应光学大气湍流
compressed wavefront sensingadaptive opticsatmospheric turbulence
ANGEL J R P. Ground-based imaging of extrasolar planets using adaptive optics [J]. Nature, 1994, 368(6468): 203-207. doi: 10.1038/368203a0http://dx.doi.org/10.1038/368203a0
HU L F, XUAN L, LIU Y J, et al. Phase-only liquid-crystal spatial light modulator for wavefront correction with high precision [J]. Optics Express, 2004, 12(26): 6403-6409. doi: 10.1364/opex.12.006403http://dx.doi.org/10.1364/opex.12.006403
赵子云,顾虎,马文超,等.自适应光学系统误差分析与参数优化研究[J].液晶与显示,2021,36(5):663-672. doi: 10.37188/CJLCD.2020-0356http://dx.doi.org/10.37188/CJLCD.2020-0356
ZHAO Z Y, GU H, MA W C, et al. Error budget and parameters optimization of adaptive optics system [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 663-672. (in Chinese). doi: 10.37188/CJLCD.2020-0356http://dx.doi.org/10.37188/CJLCD.2020-0356
GU H, ZHAO Z Y, ZHANG Z G, et al. High-precision wavefront reconstruction from Shack-Hartmann wavefront sensor data by a deep convolutional neural network [J]. Measurement Science and Technology, 2021, 32(8): 085101. doi: 10.1088/1361-6501/abf708http://dx.doi.org/10.1088/1361-6501/abf708
DUNCAN J L, ZHANG Y H, GANDHI J, et al. High-resolution imaging with adaptive optics in patients with inherited retinal degeneration [J]. Investigative Ophthalmology & Visual Science, 2007, 48(7): 3283-3291. doi: 10.1167/iovs.06-1422http://dx.doi.org/10.1167/iovs.06-1422
POYNEER L A, GAVEL D T, BRASE J M. Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform [J]. Journal of the Optical Society of America, 2002, 19(10): 2100-2111. doi: 10.1364/josaa.19.002100http://dx.doi.org/10.1364/josaa.19.002100
陈浩,宣丽,胡立发,等.望远镜的紧凑型闭环液晶自适应光学系统设计[J].液晶与显示,2010,25(3):379-385. doi: 10.3969/j.issn.1007-2780.2010.03.017http://dx.doi.org/10.3969/j.issn.1007-2780.2010.03.017
CHEN H, XUAN L, HU L F, et al. Design on compact type closed-loop liquid crystal adaptive optical system for telescope [J]. Chinese Journal of Liquid Crystals and Displays, 2010, 25(3): 379-385. (in Chinese). doi: 10.3969/j.issn.1007-2780.2010.03.017http://dx.doi.org/10.3969/j.issn.1007-2780.2010.03.017
POLANS J, MCNABB R P, IZATT J A, et al. Compressed wavefront sensing [J]. Optics Letters, 2014, 39(5): 1189-1192. doi: 10.1364/ol.39.001189http://dx.doi.org/10.1364/ol.39.001189
HOWLAND G A, LUM D J, HOWELL J C. Compressive wavefront sensing with weak value [J]. Optics Express, 2014, 22(16): 18870-18880. doi: 10.1364/oe.22.018870http://dx.doi.org/10.1364/oe.22.018870
TIK E C M, WANG X, GUO N Q, et al. Investigation on compressed wavefront sensing in freeform surface measurements [C]. 2016 4th International Conference on Photonics, Optics and Laser Technology. Rome: IEEE, 2016: 1-6. doi: 10.5220/0005743901520157http://dx.doi.org/10.5220/0005743901520157
KE X Z, WU J L, HAO J X. Distorted wavefront reconstruction based on compressed sensing [J]. Applied Physics B, 2022, 128: 107. doi: 10.1007/s00340-022-07827-6http://dx.doi.org/10.1007/s00340-022-07827-6
NISHIZAKI Y, VALDIVIA M, HORISAKI R, et al. Deep learning wavefront sensing [J]. Optics Express, 2019, 27(1): 240-251. doi: 10.1364/oe.27.000240http://dx.doi.org/10.1364/oe.27.000240
GUO H Y, XU Y J, LI Q, et al. Improved machine learning approach for wavefront sensing [J]. Sensors, 2019, 19(16): 3533. doi: 10.3390/s19163533http://dx.doi.org/10.3390/s19163533
VISHNIAKOU I, SEELIG J D. Wavefront correction for adaptive optics with reflected light and deep neural networks [J]. Optics Express, 2020, 28(10): 15459-15471. doi: 10.1364/oe.392794http://dx.doi.org/10.1364/oe.392794
JIA P, MA M Y, CAI D M, et al. Compressive Shack-Hartmann wavefront sensor based on deep neural networks [J]. Monthly Notices of the Royal Astronomical Society, 2021, 503(3): 3194-3203. doi: 10.1093/mnras/staa4045http://dx.doi.org/10.1093/mnras/staa4045
SOUTHWELL W H. Wave-front estimation from wave-front slope measurements [J]. Journal of the Optical Society of America, 1980, 70(8): 998-1006. doi: 10.1364/josa.70.000998http://dx.doi.org/10.1364/josa.70.000998
FRIED D L. Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements [J]. Journal of the Optical Society of America, 1977, 67(3): 370-375. doi: 10.1364/josa.67.000370http://dx.doi.org/10.1364/josa.67.000370
BARANIUK R, DAVENPORT M, DEVORE R, et al. A simple proof of the restricted isometry property for random matrices [J]. Constructive Approximation, 2008, 28(3): 253-263. doi: 10.1007/s00365-007-9003-xhttp://dx.doi.org/10.1007/s00365-007-9003-x
CANDÈS E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589-592. doi: 10.1016/j.crma.2008.03.014http://dx.doi.org/10.1016/j.crma.2008.03.014
DANDES E J, TAO T. Near-optimal signal recovery from random projections: Universal encoding strategies [J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. doi: 10.1109/tit.2006.885507http://dx.doi.org/10.1109/tit.2006.885507
0
浏览量
94
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构