1.四川大学 电子信息学院, 四川 成都 610065
[ "饶凤斌(1998—),男,贵州安顺人,硕士研究生,2020年于四川大学获得学士学位,主要从事集成成像3D显示方面的研究。E-mail:raofengbin@stu.scu.edu.cn" ]
[ "邓欢(1985—),女,四川内江人,博士,教授,2012年于四川大学获得博士学位,主要从事集成成像3D显示、AR显示和光场显示方面的研究。E-mail:huandeng@scu.edu.cn" ]
扫 描 看 全 文
饶凤斌, 冀清霖, 李强, 等. 基于反射偏振膜的增强现实2D/3D兼容显示[J]. 液晶与显示, 2023,38(6):842-849.
RAO Feng-bin, JI Qing-lin, LI Qiang, et al. Augmented reality 2D/3D compatible display using reflective polarizer[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(6):842-849.
饶凤斌, 冀清霖, 李强, 等. 基于反射偏振膜的增强现实2D/3D兼容显示[J]. 液晶与显示, 2023,38(6):842-849. DOI: 10.37188/CJLCD.2022-0433.
RAO Feng-bin, JI Qing-lin, LI Qiang, et al. Augmented reality 2D/3D compatible display using reflective polarizer[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(6):842-849. DOI: 10.37188/CJLCD.2022-0433.
为了将2D/3D兼容显示技术应用于增强现实设备中,本文提出了一种基于透镜阵列全息光学元件和反射偏振膜的增强现实2D/3D兼容显示系统。该系统利用反射偏振膜将投影光源进行反射或透射。反射光束载有2D显示片源,以此实现2D显示;透射光束载有3D显示片源,经透镜阵列全息光学元件调制后实现3D显示。反射偏振膜和透镜阵列全息光学元件对环境光均有较好的透过率,从而保证系统具有增强现实的光学透过性能。实验结果表明,所提增强现实2D/3D兼容显示系统能够在2D显示模式和3D显示模式之间进行自由切换,并且其环境光对比度高于显示标准要求的标准值3∶1。
In order to apply two-dimensional (2D)/three-dimensional (3D) compatible display technology into augmented reality display devices, this paper proposed an augmented reality 2D/3D compatible display system based on lens array holographic optical element and reflective polarizer. By using reflective polarizer to reflect or transmit the projection light, the reflected light loaded with 2D image source is used to realize 2D display, and the transmitted light loaded with 3D image source is used to realize 3D display after being modulated by lens array holographic optical element. Both reflective polarizer and lens array holographic optical element have good ambient transmittance, which makes the display system own optical see-through property for augmented reality application. The experimental results indicate that the proposed augmented reality 2D/3D compatible display system can switch freely between 2D and 3D display modes, and the ambient contrast ratio of the system is higher than 3∶1, which is the standard value of display.
2D/3D兼容显示增强现实显示反射偏振膜全息光学元件环境光对比度
2D/3D compatible displayaugmented realityreflective polarizerholographic optical elementambient contrast ratio
王琼华,邓欢.集成成像3D拍摄与显示方法[J].液晶与显示,2014,29(2):153-158. doi: 10.3788/YJYXS20142902.0153http://dx.doi.org/10.3788/YJYXS20142902.0153
WANG Q H, DENG H. 3D pickup and display method of integral imaging [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(2): 153-158. (in Chinese). doi: 10.3788/YJYXS20142902.0153http://dx.doi.org/10.3788/YJYXS20142902.0153
PARK J H, KIM H R, KIM Y, et al. Depth-enhanced three-dimensional‒two-dimensional convertible display based on modified integral imaging [J]. Optics Letters, 2004, 29(23): 2734-2736. doi: 10.1364/ol.29.002734http://dx.doi.org/10.1364/ol.29.002734
XIONG J H, HSIANG E L, HE Z Q, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives [J]. Light: Science & Applications, 2021, 10(1): 216. doi: 10.1038/s41377-021-00658-8http://dx.doi.org/10.1038/s41377-021-00658-8
PARK J H, KIM J, KIM Y, et al. Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging [J]. Optics Express, 2005, 13(6): 1875-1884. doi: 10.1364/opex.13.001875http://dx.doi.org/10.1364/opex.13.001875
CHO S W, PARK J H, KIM Y, et al. Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging [J]. Optics Letters, 2006, 31(19): 2852-2854. doi: 10.1364/ol.31.002852http://dx.doi.org/10.1364/ol.31.002852
DENG H, XIONG Z L, XING Y, et al. A high optical efficiency 3D/2D convertible integral imaging display [J]. Journal of the Society for Information Display, 2016, 24(2): 85-89. doi: 10.1002/jsid.421http://dx.doi.org/10.1002/jsid.421
WANG Z, WANG A T, WANG S L, et al. High optical efficiency lensless 2D-3D convertible integral imaging display using an edge-lit light guide plate [J]. Journal of Display Technology, 2016, 12(12): 1706-1709.
HONG J, KIM Y, PARK S G, et al. 3D/2D convertible projection-type integral imaging using concave half mirror array [J]. Optics Express, 2010, 18(20): 20628-20637. doi: 10.1364/oe.18.020628http://dx.doi.org/10.1364/oe.18.020628
CHOU P Y, WU J Y, HUANG S H, et al. Hybrid light field head-mounted display using time-multiplexed liquid crystal lens array for resolution enhancement [J]. Optics Express, 2019, 27(2): 1164-1177. doi: 10.1364/oe.27.001164http://dx.doi.org/10.1364/oe.27.001164
HONG K, YEOM J, JANG C, et al. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality [J]. Optics Letters, 2014, 39(1): 127-130. doi: 10.1364/ol.39.000127http://dx.doi.org/10.1364/ol.39.000127
JANG C, HONG K, YEOM J, et al. See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element [J]. Optics Express, 2014, 22(23): 27958-27967. doi: 10.1364/oe.22.027958http://dx.doi.org/10.1364/oe.22.027958
LEE S, JANG C, CHO J, et al. Viewing angle enhancement of an integral imaging display using Bragg mismatched reconstruction of holographic optical elements [J]. Applied Optics, 2016, 55(3): A95-A103. doi: 10.1364/ao.55.000a95http://dx.doi.org/10.1364/ao.55.000a95
YEOM J, JEONG J, JANG C, et al. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element [J]. Applied Optics, 2015, 54(30): 8856-8862. doi: 10.1364/ao.54.008856http://dx.doi.org/10.1364/ao.54.008856
HONG K, YEOM J, JANG C, et al. Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements [J]. Optics Express, 2014, 22(12): 14363-14374. doi: 10.1364/oe.22.014363http://dx.doi.org/10.1364/oe.22.014363
ZHANG H L, DENG H, LI J J, et al. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal [J]. Optics Letters, 2019, 44(2): 387-390. doi: 10.1364/ol.44.000387http://dx.doi.org/10.1364/ol.44.000387
JI Q L, DENG H, ZHANG H L, et al. Optical see-through 2D/3D compatible display using variable-focus lens and multiplexed holographic optical elements [J]. Photonics, 2021, 8(8): 297. doi: 10.3390/photonics8080297http://dx.doi.org/10.3390/photonics8080297
LI Q, HE W, DENG H, et al. High-performance reflection-type augmented reality 3D display using a reflective polarizer [J]. Optics Express, 2021, 29(6): 9446-9453. doi: 10.1364/oe.421879http://dx.doi.org/10.1364/oe.421879
SINGH R, UNNI K N N, SOLANKI A, et al. Improving the contrast ratio of OLED displays: an analysis of various techniques [J]. Optical Materials, 2012, 34(4): 716-723. doi: 10.1016/j.optmat.2011.10.005http://dx.doi.org/10.1016/j.optmat.2011.10.005
CHEN H W, TAN G J, WU S T. Ambient contrast ratio of LCDs and OLED displays [J]. Optics Express, 2017, 25(26): 33643-33656. doi: 10.1364/oe.25.033643http://dx.doi.org/10.1364/oe.25.033643
0
浏览量
75
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构