1.吉林大学 电子科学与工程学院, 集成光电子学国家重点实验室吉林大学实验区, 吉林 长春 130012
[ "徐孟鑫(1998—),男,黑龙江伊春人,博士研究生,2020年于吉林大学获得学士学位,主要从事有机电致发光器件方面的研究。E-mail:xumx22@jlu.edu.cn" ]
[ "谢文法(1978—),男,福建三明人,博士,教授,2004年于吉林大学获得博士学位,主要从事有机光电子学方面的研究。E-mail:xiewf@jlu.edu.cn" ]
扫 描 看 全 文
徐孟鑫, 刘士浩, 张乐天, 等. 高色纯度有机发光器件研究进展[J]. 液晶与显示, 2023,38(4):432-447.
XU Meng-xin, LIU Shi-hao, ZHANG Le-tian, et al. Research progress in high colour purity organic light emitting devices[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(4):432-447.
徐孟鑫, 刘士浩, 张乐天, 等. 高色纯度有机发光器件研究进展[J]. 液晶与显示, 2023,38(4):432-447. DOI: 10.37188/CJLCD.2022-0396.
XU Meng-xin, LIU Shi-hao, ZHANG Le-tian, et al. Research progress in high colour purity organic light emitting devices[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(4):432-447. DOI: 10.37188/CJLCD.2022-0396.
为了使有机发光显示技术满足国际电信联盟为超高清电视所制定的色域标准(BT 2020),高色纯度有机发光器件(OLED)的研究与开发具有重要意义。本文分别从窄带发光OLED材料和微腔OLED器件两方面介绍高色纯度有机发光器件的重要研究进展。首先,分析了分子的振动耦合对有机发光材料色纯度的影响,并针对荧光、磷光和热激活延迟荧光(TADF)3种材料,分别讨论了目前改善有机发光色纯度的方法,总结了最新的材料设计策略与研究结果。然后,介绍了微腔效应的原理,分析其对有机发光器件光谱的修饰与窄化作用,并介绍了利用微腔效应实现高色纯度发光的器件结构设计与优化方案。最后,讨论了高色纯度OLED器件在显示领域的未来前景与挑战。
In order to enable organic light emitting display technology to meet the colour gamut standard set by the International Telecommunication Union for Ultra HD TV (BT 2020), the research and development of high colour purity organic light-emitting device (OLED) is important. In this review, we present the latest developments and important research on high colour purity OLEDs in terms of both narrow-band light-emitting materials and microcavity OLEDs, respectively. This paper analyses the effect of vibrational coupling of molecules on the colour purity of organic light-emitting materials, and discusses current methods to improve the colour purity for fluorescent, phosphorescent and thermally-activated delayed fluorescence materials, respectively, and summarizes the latest material design strategies and research results. The principles of the microcavity effect is introduced and its modifying and narrowing effects on the spectra of organic light-emitting devices is analyzed, and then the design of device structures to achieve high colour purity light-emitting using the microcavity effect is presented. Finally, we discuss the future prospects and challenges of high colour purity OLED devices in the display field.
高色纯度有机发光器件BT 2020振动耦合分子设计微腔效应
high colour purity OLEDsBT 2020vibrational couplingmolecular designmicrocavity effect
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Applied Physics Letters, 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
PAN T, LIU S H, ZHANG L T, et al. A flexible, multifunctional, optoelectronic anticounterfeiting device from high-performance organic light-emitting paper [J]. Light: Science & Applications, 2022, 11(1): 59. doi: 10.1038/s41377-022-00760-5http://dx.doi.org/10.1038/s41377-022-00760-5
LIU S H, ZANG C X, ZHANG J M, et al. Air-stable ultrabright inverted organic light-emitting devices with metal ion-chelated polymer injection layer [J]. Nano-Micro Letters, 2022, 14(1): 14. doi: 10.1007/s40820-021-00745-whttp://dx.doi.org/10.1007/s40820-021-00745-w
ZHANG J M, LIU S H, CHEN Y F, et al. Simple-structure color-tunable fluorescent organic light-emitting devices with chromaticity difference beyond five-step McAdam ellipses [J]. Journal of Physics D: Applied Physics, 2021, 54(50): 505103. doi: 10.1088/1361-6463/ac2642http://dx.doi.org/10.1088/1361-6463/ac2642
崔荣朕, 李云辉, 周亮, 等. 蓝色延迟荧光材料及器件的研究进展 [J]. 应用化学, 2019, 36 (1):1-9.
CUI R Z, LI Y H, ZHOU L, et al. Recent progress on blue delayed fluorescent materials and devices [J]. Chinese Journal of Applied Chemistry, 2019, 36 (1):1-9. (in Chinese)
ZHANG X, YAN X H, GRAY L J, et al. Modulation of recombination zone position for white perovskite/organic emitter hybrid light-emitting devices[J]. Applied Physics Letters, 2022, 120(9): 093301. doi: 10.1063/5.0077633http://dx.doi.org/10.1063/5.0077633
YE Y, HE Y W, XIU X Y. Manipulating ultra-high definition video traffic [J]. IEEE MultiMedia, 2015, 22(3): 73-81. doi: 10.1109/mmul.2015.26http://dx.doi.org/10.1109/mmul.2015.26
李继军,聂晓梦,甄威,等.显示技术比较及新进展[J].液晶与显示,2018,33(1):74-84. doi: 10.3788/YJYXS20183301.0074http://dx.doi.org/10.3788/YJYXS20183301.0074
LI J J, NIE X M, ZHEN W, et al. New developments and comparisons in display technology [J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(1): 74-84. (in Chinese). doi: 10.3788/YJYXS20183301.0074http://dx.doi.org/10.3788/YJYXS20183301.0074
张祥,陈逸凡,刘士浩,等.交流驱动的绿光透明有机电致发光器件[J].发光学报,2021,42(2):153-157. doi: 10.37188/CJL.20200384http://dx.doi.org/10.37188/CJL.20200384
ZHANG X, CHEN Y F, LIU S H, et al. Alternating current driven green transparent organic light-emitting devices [J]. Chinese Journal of Luminescence, 2021, 42(2): 153-157. (in Chinese). doi: 10.37188/CJL.20200384http://dx.doi.org/10.37188/CJL.20200384
刘健,谢文法.OLED器件光电性能集成测试系统研制[J].液晶与显示,2013,28(1):132-137. doi: 10.3788/yjyxs20132801.0132http://dx.doi.org/10.3788/yjyxs20132801.0132
LIU J, XIE W F. Integrated optoelectronic performance test system for OLEDs [J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(1): 132-137 (in Chinese). doi: 10.3788/yjyxs20132801.0132http://dx.doi.org/10.3788/yjyxs20132801.0132
唐歌,刘士浩,张乐天,等.单层热激活延迟荧光有机发光器件及其激子分布特性[J].发光学报,2022,43(4):576-582. doi: 10.37188/CJL.20220014http://dx.doi.org/10.37188/CJL.20220014
TANG G, LIU S H, ZHANG L T, et al. Single-layer thermally activated delayed fluorescent organic light-emitting devices and exciton distribution profiles [J]. Chinese Journal of Luminescence, 2022, 43(4): 576-582. (in Chinese). doi: 10.37188/CJL.20220014http://dx.doi.org/10.37188/CJL.20220014
汤顺清.色度学[M].北京:北京理工大学出版社,1990.
TANG S Q. Colorimetry[M]. Beijing: Beijing Institute of Technology Press, 1990. (in Chinese)
丁涛, 何欣, 王玉萍, 等. 有序表面增强拉曼散射基底制备的研究发展 [J]. 应用化学, 2022, 39 (8): 1167-1176.
DING T, HE X, WANG Y P, et al. Reserch progress of preparation of ordered surface enhanced raman scattering substrate [J]. Chinese Journal of Applied Chemistry, 2022, 39 (8): 1167-1176. (in Chinese)
YU Z W, ZHANG J X, LIU S H, et al. High-efficiency blue phosphorescent organic light-emitting devices with low efficiency roll-off at ultrahigh luminance by the reduction of triplet-polaron quenching [J]. ACS applied materials & interfaces, 2019, 11(6): 6292-6301. doi: 10.1021/acsami.8b19280http://dx.doi.org/10.1021/acsami.8b19280
ZHANG T Y, LIU M, LI T, et al. Efficient hybrid white organic light-emitting devices with a reduced efficiency roll-off based on a blue fluorescent emitter of which charge carriers are ambipolar and electric-field independent [J]. The Journal of Physical Chemistry C, 2011, 115(5): 2428-2432. doi: 10.1021/jp109921ehttp://dx.doi.org/10.1021/jp109921e
LIU S H, ZHANG X, YIN M J, et al. Coffee-ring-free ultrasonic spray coating single-emission layers for white organic light-emitting devices and their energy-transfer mechanism [J]. ACS Applied Energy Materials, 2018, 1(1): 103-112. doi: 10.1021/acsaem.7b00011http://dx.doi.org/10.1021/acsaem.7b00011
PAN T, LIU S H, ZHANG L T, et al. Flexible organic optoelectronic devices on paper [J]. iScience, 2022, 25(2): 103782. doi: 10.1016/j.isci.2022.103782http://dx.doi.org/10.1016/j.isci.2022.103782
LIU S H, ZHANG J M, ZANG C X, et al. Centimeter-scale hole diffusion and its application in organic light-emitting diodes [J]. Science Advances, 2022, 8(17): eabm1999. doi: 10.1126/sciadv.abm1999http://dx.doi.org/10.1126/sciadv.abm1999
LIU W B, LIU S H, YU J, et al. Efficient inverted organic light-emitting devices with self or intentionally Ag-doped interlayer modified cathode [J]. Applied Physics Letters, 2014, 104(9): 093305. doi: 10.1063/1.4868031http://dx.doi.org/10.1063/1.4868031
ZHANG X, PAN T, XIE W F, et al. Color-tunable, spectra-stable flexible white top-emitting organic light-emitting devices based on alternating current driven and dual-microcavity technology [J]. ACS Photonics, 2019, 6(9): 2350-2357. doi: 10.1021/acsphotonics.9b00900http://dx.doi.org/10.1021/acsphotonics.9b00900
HAN Y P, ZHANG J M, DUAN Y C, et al. Rational design of orange-red iridium (Ⅲ) complexes by an isomer engineering strategy for improved performance of white organic light-emitting diodes [J]. Journal of Materials Chemistry C, 2022, 10(38): 14202-14210. doi: 10.1039/d2tc02249dhttp://dx.doi.org/10.1039/d2tc02249d
ZANG C X, LIU S H, XU M X, et al. Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling[J]. Light: Science & Applications, 2021, 10(1): 116. doi: 10.1038/s41377-021-00559-whttp://dx.doi.org/10.1038/s41377-021-00559-w
LIU S H, WEN X M, LIU W B, et al. Angle-stable top-emitting white organic light-emitting devices employing a down-conversion layer [J]. Current Applied Physics, 2014, 14(11): 1451-1454. doi: 10.1016/j.cap.2014.08.003http://dx.doi.org/10.1016/j.cap.2014.08.003
MAO H T, SONG W L, ZANG C X, et al. Manipulating charge carrier transporting of disubstituted phenylbenzoimidazole-based host materials for efficient full-color PhOLEDs [J]. Organic Electronics, 2020, 77: 105513. doi: 10.1016/j.orgel.2019.105513http://dx.doi.org/10.1016/j.orgel.2019.105513
YIN M J, YU Z W, PAN T, et al. Efficient and angle-stable white top-emitting organic light emitting devices with patterned quantum dots down-conversion films [J]. Organic Electronics, 2018, 56: 46-50. doi: 10.1016/j.orgel.2018.02.004http://dx.doi.org/10.1016/j.orgel.2018.02.004
YANG H S, PENG X K, CAO C, et al. A deep blue fluorescent emitter functioning as host material in highly efficient phosphorescent and hybrid white organic light-emitting devices [J]. Organic Electronics, 2020, 85: 105848. doi: 10.1016/j.orgel.2020.105848http://dx.doi.org/10.1016/j.orgel.2020.105848
LIU W B, LIU S H, ZHANG W, et al. Angle-stable inverted top-emitting white organic light-emitting devices based on gradient-doping electron injection interlayer [J]. Organic Electronics, 2015, 25: 335-339. doi: 10.1016/j.orgel.2015.07.012http://dx.doi.org/10.1016/j.orgel.2015.07.012
DING L, ZANG C X, WEN L L, et al. High-performance and stable warm white OLEDs based on orange iridium (Ⅲ) phosphors modified with simple alkyl groups [J]. Organometallics, 2020, 39(18): 3384-3393. doi: 10.1021/acs.organomet.0c00472http://dx.doi.org/10.1021/acs.organomet.0c00472
DE JONG M, SEIJO L, MEIJERINK A, et al. Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter [J]. Physical Chemistry Chemical Physics, 2015, 17(26): 16959-16969. doi: 10.1039/c5cp02093jhttp://dx.doi.org/10.1039/c5cp02093j
ZHAO B, ZHANG T Y, CHU B, et al. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host [J]. Scientific Reports, 2015, 5(1): 10697. doi: 10.1038/srep10697http://dx.doi.org/10.1038/srep10697
ZHANG H M, FU Q, ZENG W J, et al. High-efficiency fluorescent organic light-emitting diodes with MoO3 and PEDOT: PSS composition film as a hole injection layer [J]. Journal of Materials Chemistry C, 2014, 2(45): 9620-9624. doi: 10.1039/c4tc01310ghttp://dx.doi.org/10.1039/c4tc01310g
TANG X T, PAN R H, ZHAO X, et al. Achievement of high-level reverse intersystem crossing in rubrene-doped organic light-emitting diodes [J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 2804-2811. doi: 10.1021/acs.jpclett.0c00451http://dx.doi.org/10.1021/acs.jpclett.0c00451
KIM S K, YANG B, MA Y G, et al. Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design [J]. Journal of Materials Chemistry, 2008, 18(28): 3376-3384. doi: 10.1039/b805062ghttp://dx.doi.org/10.1039/b805062g
PARK H, LEE J, KANG I, et al. Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency [J]. Journal of Materials Chemistry, 2012, 22(6): 2695-2700. doi: 10.1039/c2jm16056khttp://dx.doi.org/10.1039/c2jm16056k
PARK Y, KIM S, LEE J H, et al. New blue-violet emitters based on an indenopyrazine core for OLEDs: Effects of the position of m-terphenyl side group substitution on optical and electroluminescence properties [J]. Organic Electronics, 2010, 11(5): 864-871. doi: 10.1016/j.orgel.2010.01.030http://dx.doi.org/10.1016/j.orgel.2010.01.030
YE K Q, WANG J, CHE C M, et al. Supramolecular structures and assembly and luminescent properties of quinacridone derivatives [J]. The Journal of Physical Chemistry B, 2005, 109(16): 8008-8016. doi: 10.1021/jp0444767http://dx.doi.org/10.1021/jp0444767
WANG C G, CHEN D, WANG Y P, et al. Polymorph, assembly, luminescence and semiconductor properties of a quinacridone derivative with extended π-conjugated framework [J]. Journal of Materials Chemistry C, 2022, 1(35): 5548-5556.
MERKUSHEV D A, USOLTSEV S D, MARFIN Y S, et al. BODIPY associates in organic matrices: Spectral properties, photostability and evaluation as OLED emitters [J]. Materials Chemistry and Physics, 2017, 187: 104-111. doi: 10.1016/j.matchemphys.2016.11.053http://dx.doi.org/10.1016/j.matchemphys.2016.11.053
SONG X Z, ZHANG D D, ZHANG Y W, et al. Strategically modulating carriers and excitons for efficient and stable ultrapure-green fluorescent OLEDs with a sterically hindered BODIPY dopant [J]. Advanced Optical Materials, 2020, 8(15): 2000483. doi: 10.1002/adom.202000483http://dx.doi.org/10.1002/adom.202000483
HOWARTH A J, MAJEWSKI M B, WOLF M O. Photophysical properties and applications of coordination complexes incorporating pyrene [J]. Coordination Chemistry Reviews, 2015, 282-283: 139-149. doi: 10.1016/j.ccr.2014.03.024http://dx.doi.org/10.1016/j.ccr.2014.03.024
付强, 李伟, 魏奇, 等. 钙钛矿光伏电池封装材料与工艺研究进展 [J]. 应用化学, 2022, 39 (9): 1321-1344.
FU Q, LI W, WEI Q, et al. Review of perovskite photovoltaic cell encapsulation material and technology [J]. Chinese Journal of Applied Chemistry, 2022, 39 (9): 1321-1344. (in Chinese)
MA Y G, ZHANG H Y, SHEN J C, et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synthetic Metals, 1998, 94(3): 245-248. doi: 10.1016/s0379-6779(97)04166-0http://dx.doi.org/10.1016/s0379-6779(97)04166-0
BALDO M A, LAMANSKY S, BURROWS P E, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Applied Physics Letters, 1999, 75(1): 4-6. doi: 10.1063/1.124258http://dx.doi.org/10.1063/1.124258
HOFBECK T, YERSIN H. The triplet state of fac-Ir (ppy)3 [J]. Inorganic Chemistry, 2010, 49(20): 9290-9299. doi: 10.1021/ic100872whttp://dx.doi.org/10.1021/ic100872w
HOHENLEUTNER A, SCHMIDBAUER S, VASOLD R, et al. Rapid combinatorial synthesis and chromatography based screening of phosphorescent iridium complexes for solution processing [J]. Advanced Functional Materials, 2012, 22(16): 3406-3413. doi: 10.1002/adfm.201200397http://dx.doi.org/10.1002/adfm.201200397
KIM H U, SOHN S, CHOI W, et al. Substituents engineered deep-red to near-infrared phosphorescence from tris-heteroleptic iridium (Ⅲ) complexes for solution processable red-NIR organic light-emitting diodes [J]. Journal of Materials Chemistry C, 2018, 6(39): 10640-10658. doi: 10.1039/c8tc04321chttp://dx.doi.org/10.1039/c8tc04321c
REN B Y, GUO R D, ZHONG D K, et al. A yellow-emitting homoleptic iridium (Ⅲ) complex constructed from a multifunctional Spiro ligand for highly efficient phosphorescent organic light-emitting diodes [J]. Inorganic Chemistry, 2017, 56(14): 8397-8407. doi: 10.1021/acs.inorgchem.7b01034http://dx.doi.org/10.1021/acs.inorgchem.7b01034
MATSUI K, ODA S, YOSHIURA K, et al. One-shot multiple borylation toward BN-doped nanographenes [J]. Journal of the American Chemical Society, 2018, 140(4): 1195-1198. doi: 10.1021/jacs.7b10578http://dx.doi.org/10.1021/jacs.7b10578
FLEETHAM T, LI G J, WEN L L, et al. Efficient “pure” blue OLEDs employing tetradentate Pt complexes with a narrow spectral bandwidth [J]. Advanced Materials, 2014, 26(41): 7116-7121. doi: 10.1002/adma.201401759http://dx.doi.org/10.1002/adma.201401759
LI J, TURNER E, HUANG L. Metal compounds and methods and uses thereof: US, 9711741 [P]. 2017-07-18.
LI G J, FLEETHAM T, TURNER E, et al. Highly efficient and stable narrow-band phosphorescent emitters for OLED applications [J]. Advanced Optical Materials, 2015, 3(3): 390-397. doi: 10.1002/adom.201400341http://dx.doi.org/10.1002/adom.201400341
WANG H, ZHAO H Y, ZANG C X, et al. Stable and efficient phosphorescent organic light-emitting device utilizing a δ-carboline-containing host displaying thermally activated delayed fluorescence[J]. Journal of Materials Chemistry C, 2020, 8(11): 3800-3806. doi: 10.1039/c9tc06601bhttp://dx.doi.org/10.1039/c9tc06601b
WANG H, ZANG C X, SHAN G G, et al. Bluish-green thermally activated delayed fluorescence material for blue-hazard free hybrid white organic light-emitting device with high color quality and low efficiency roll-off [J]. Advanced Optical Materials, 2019, 7(9): 1801718. doi: 10.1002/adom.201801718http://dx.doi.org/10.1002/adom.201801718
ENDO A, SATO K, YOSHIMURA K, et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes [J]. Applied Physics Letters, 2011, 98(8): 083302. doi: 10.1063/1.3558906http://dx.doi.org/10.1063/1.3558906
HATAKEYAMA T, SHIREN K, NAKAJIMA K, et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO-LUMO separation by the multiple resonance effect [J]. Advanced Materials, 2016, 28(14): 2777-2781. doi: 10.1002/adma.201505491http://dx.doi.org/10.1002/adma.201505491
NAKATSUKA S, GOTOH H, KINOSHITA K, et al. Divergent synthesis of heteroatom-centered 4,8,12‐triazatriangulenes [J]. Angewandte Chemie, 2017, 129(18): 5169-5172. doi: 10.1002/ange.201701246http://dx.doi.org/10.1002/ange.201701246
KITAMOTO Y, SUZUKI T, MIYATA Y, et al. The first synthesis and X-ray crystallographic analysis of an oxygen-bridged planarized triphenylborane [J]. Chemical Communications, 2016, 52(44): 7098-7101. doi: 10.1039/c6cc02440hhttp://dx.doi.org/10.1039/c6cc02440h
ODA S, KAWAKAMI B, KAWASUMI R, et al. Multiple resonance effect-induced sky-blue thermally activated delayed fluorescence with a narrow emission band [J]. Organic Letters, 2019, 21(23): 9311-9314. doi: 10.1021/acs.orglett.9b03342http://dx.doi.org/10.1021/acs.orglett.9b03342
YANG M L, PARK I S, YASUDA T. Full-color, narrowband, and high-efficiency electroluminescence from boron and carbazole embedded polycyclic heteroaromatics [J]. Journal of the American Chemical Society, 2020, 142(46): 19468-19472. doi: 10.1021/jacs.0c10081http://dx.doi.org/10.1021/jacs.0c10081
ODA S, KUMANO W, HAMA T, et al. Carbazole-based dabna analogues as highly efficient thermally activated delayed fluorescence materials for narrowband organic light-emitting diodes [J]. Angewandte Chemie, 2021, 133(6): 2918-2922. doi: 10.1002/ange.202012891http://dx.doi.org/10.1002/ange.202012891
YUAN Y, TANG X, DU X Y, et al. The design of fused amine/carbonyl system for efficient thermally activated delayed fluorescence: novel multiple resonance core and electron acceptor [J]. Advanced Optical Materials, 2019, 7(7): 1801536. doi: 10.1002/adom.201801536http://dx.doi.org/10.1002/adom.201801536
HALL D, SURESH S M, DOS SANTOS P L, et al. Improving processability and efficiency of resonant TADF emitters: a design strategy [J]. Advanced Optical Materials, 2020, 8(2): 1901627. doi: 10.1002/adom.201901627http://dx.doi.org/10.1002/adom.201901627
SCHUBERT E F, HUNT N E J, MICOVIC M, et al. Highly efficient light-emitting diodes with microcavities [J]. Science, 1994, 265(5174): 943-945. doi: 10.1126/science.265.5174.943http://dx.doi.org/10.1126/science.265.5174.943
DEPPE D G, LEI C, LIN C C, et al. Spontaneous emission from planar microstructures [J]. Journal of Modern Optics, 1994, 41(2): 325-344. doi: 10.1080/09500349414550361http://dx.doi.org/10.1080/09500349414550361
ZANG C X, XU M X, ZHANG L T, et al. Organic-inorganic hybrid thin film light-emitting devices: interfacial engineering and device physics [J]. Journal of Materials Chemistry C, 2021, 9(5): 1484-1519. doi: 10.1039/d0tc05059hhttp://dx.doi.org/10.1039/d0tc05059h
WEN Y, WANG Y K, ZHOU J G, et al. Exciplex host coupled with a micro-cavity enabling high efficiency OLEDs with narrow emission profile [J]. Journal of Materials Chemistry C, 2022, 10(14): 5666-5671. doi: 10.1039/d1tc05978ehttp://dx.doi.org/10.1039/d1tc05978e
LI X K, LIU W X, CHEN K, et al. Very bright and efficient ITO-free narrow-spectrum micro-cavity top-emitting organic light-emitting diodes with low operation voltage [J]. Journal of Materials Chemistry C, 2022, 10(8): 3241-3247. doi: 10.1039/d1tc05697bhttp://dx.doi.org/10.1039/d1tc05697b
REN W, SON K R, PARK T H, et al. Manipulation of blue TADF top-emission OLEDs by the first-order optical cavity design: toward a highly pure blue emission and balanced charge transport [J]. Photonics Research, 2021, 9(8): 1502-1512. doi: 10.1364/prj.432042http://dx.doi.org/10.1364/prj.432042
MIKAMI A. Optical analysis of the dual-microcavity effect in a red light-emitting organic device [J]. Journal of Information Display, 2021, 22(2): 99-106. doi: 10.1080/15980316.2020.1848934http://dx.doi.org/10.1080/15980316.2020.1848934
0
浏览量
432
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构