1.南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院, 江苏 南京 210023
2.南京大学 现代工程与应用科学学院 固体微结构物理国家重点实验室, 江苏 南京 210093
3.东南大学 毫米波国家重点实验室, 江苏 南京 210096
[ "王 磊(1982—),男,江苏徐州人,博士,副教授,2014年于南京大学获得博士学位,主要从事液晶太赫兹光子学、超材料与石墨烯等方面的研究。E-mail:wangl@njupt.edu.cn" ]
[ "李炳祥(1982—),男,福建泉州人,博士,教授,2019年于美国肯特州立大学先进材料与液晶研究所获得博士学位,主要从事液晶、刺激响应软材料、活性物质和生物物理等方面的研究。E-mail:bxli@njupt.edu.cn" ]
[ "胡伟(1981—),男,山东日照人,博士,教授,2009年于吉林大学获得博士学位,从事液晶光子学、聚焦光控液晶层级序构、光寻址液晶调光、军民用液晶元件开发等方面的研究。E-mail:huwei@nju.edu.cn" ]
[ "陆延青(1971—),男,江苏如皋人,博士,教授,1996年于南京大学获得博士学位,主要从事微纳光学、液晶光学、光纤器件方面的研究。E-mail:yqlu@nju.edu.cn" ]
扫 描 看 全 文
王磊, 吴双悦, 宗顾卫, 等. 液晶太赫兹光子学研究进展[J]. 液晶与显示, 2023,38(4):419-431.
WANG Lei, WU Shuang-yue, ZONG Gu-wei, et al. Research progress of liquid crystal terahertz photonics[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(4):419-431.
王磊, 吴双悦, 宗顾卫, 等. 液晶太赫兹光子学研究进展[J]. 液晶与显示, 2023,38(4):419-431. DOI: 10.37188/CJLCD.2022-0370.
WANG Lei, WU Shuang-yue, ZONG Gu-wei, et al. Research progress of liquid crystal terahertz photonics[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(4):419-431. DOI: 10.37188/CJLCD.2022-0370.
液晶作为液态和固态之间的中间态,具有液体的流动性和晶体的各向异性,其指向矢灵活可调,从微波到紫外都有广泛应用。近年来液晶光子学在太赫兹波段展现出巨大应用前景,本文综述了基于液晶的太赫兹源、可调太赫兹器件和太赫兹探测器的研究进展,探讨了未来液晶太赫兹光子学的发展趋势,如新型铁电向列相、液晶拓扑在太赫兹领域的应用,多模式、多参量的太赫兹波按需产生、调制与探测等。
Liquid Crystal (LC), as an intermediate state between liquid and solid, has the fluidity of liquid and the anisotropy of crystal, and its director is flexible and tunable. It has a wide range of applications from microwave to ultraviolet. In recent years, LC photonics has shown great application prospects in the terahertz band. This paper reviews the research progress of LC-based terahertz sources, tunable terahertz devices and terahertz detectors, and discusses the future development of LC terahertz photonics such as ferroelectric nematic phase, liquid crystal topology, as well as multi-mode and multi-parameter on demand terahertz wave generation, modulation and detection.
液晶太赫兹源太赫兹器件太赫兹探测器
liquid crystalsterahertz sourcesterahertz devicesterahertz detectors
XIONG J H, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications [J]. eLight, 2021, 1(1): 3. doi: 10.1186/s43593-021-00003-xhttp://dx.doi.org/10.1186/s43593-021-00003-x
LI Y L, LI N N, WANG D, et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size [J]. Light: Science & Applications, 2022, 11(1): 188. doi: 10.1038/s41377-022-00880-yhttp://dx.doi.org/10.1038/s41377-022-00880-y
MAUNE H, JOST M, REESE R, et al. Microwave liquid crystal technology [J]. Crystals, 2018, 8(9): 355. doi: 10.3390/cryst8090355http://dx.doi.org/10.3390/cryst8090355
FAN Y H, LIN Y H, REN H W, et al. Fast-response and scattering-free polymer network liquid crystals for infrared light modulators [J]. Applied Physics Letters, 2004, 84(8): 1233-1235. doi: 10.1063/1.1649816http://dx.doi.org/10.1063/1.1649816
LIU S J, CHEN P, GE S J, et al. 3D engineering of orbital angular momentum beams via liquid-crystal geometric phase [J]. Laser & Photonics Reviews, 2022, 16(6): 2200118. doi: 10.1002/lpor.202200118http://dx.doi.org/10.1002/lpor.202200118
ZHU L, XU C T, CHEN P, et al. Pancharatnam‒Berry phase reversal via opposite-chirality-coexisted superstructures [J]. Light: Science & Applications, 2022, 11(1): 135. doi: 10.1038/s41377-022-00835-3http://dx.doi.org/10.1038/s41377-022-00835-3
周俊,刘盛纲.太赫兹生物医学应用的研究进展[J].现代应用物理,2014,5(2):85-97. doi: 10.3969/j.issn.2095-6223.2014.02.001http://dx.doi.org/10.3969/j.issn.2095-6223.2014.02.001
ZHOU J, LIU S G. Research progress of terahertz biomedical applications [J]. Modern Applied Physics, 2014, 5(2): 85-97. (in Chinese). doi: 10.3969/j.issn.2095-6223.2014.02.001http://dx.doi.org/10.3969/j.issn.2095-6223.2014.02.001
姚建铨,迟楠,杨鹏飞,等.太赫兹通信技术的研究与展望[J].中国激光,2009,36(9):2213-2233. doi: 10.3788/cjl20093609.2213http://dx.doi.org/10.3788/cjl20093609.2213
YAO J Q, CHI N, YANG P F, et al. Study and outlook of terahertz communication technology [J]. Chinese Journal of Lasers, 2009, 36(9): 2213-2233. (in Chinese). doi: 10.3788/cjl20093609.2213http://dx.doi.org/10.3788/cjl20093609.2213
TONOUCHI M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3http://dx.doi.org/10.1038/nphoton.2007.3
FERGUSON B, ZHANG X C. Materials for terahertz science and technology [J]. Nature Materials, 2002, 1(1): 26-33. doi: 10.1038/nmat708http://dx.doi.org/10.1038/nmat708
ZHANG X C, MA X F, JIN Y, et al. Terahertz optical rectification from a nonlinear organic crystal [J]. Applied Physics Letters, 1992, 61(26): 3080-3082. doi: 10.1063/1.107968http://dx.doi.org/10.1063/1.107968
GUIRAMAND L, NKECK J E, ROPAGNOL X, et al. Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal [J]. Photonics Research, 2022, 10(2): 340-346. doi: 10.1364/prj.428418http://dx.doi.org/10.1364/prj.428418
JIN Q, E Y W, WILLIAMS K, et al. Observation of broadband terahertz wave generation from liquid water [J]. Applied Physics Letters, 2017, 111(7): 071103. doi: 10.1063/1.4990824http://dx.doi.org/10.1063/1.4990824
E Y W, ZHANG L L, TSYPKIN A, et al. Progress, challenges, and opportunities of terahertz emission from liquids [J]. Journal of the Optical Society of America B, 2022, 39(3): A43-A51. doi: 10.1364/josab.446095http://dx.doi.org/10.1364/josab.446095
KRESS M, LÖFFLER T, EDEN S, et al. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves [J]. Optics Letters, 2004, 29(10): 1120-1122. doi: 10.1364/ol.29.001120http://dx.doi.org/10.1364/ol.29.001120
COOK D J, HOCHSTRASSER R M. Intense terahertz pulses by four-wave rectification in air [J]. Optics Letters, 2000, 25(16): 1210-1212. doi: 10.1364/ol.25.001210http://dx.doi.org/10.1364/ol.25.001210
KHOO I C. Nonlinear optics of liquid crystalline materials [J]. Physics Reports, 2009, 471(5/6): 221-267. doi: 10.1016/j.physrep.2009.01.001http://dx.doi.org/10.1016/j.physrep.2009.01.001
谌东中,余学海.具有二阶非线性光学特性的液晶聚合物[J].高分子材料科学与工程,1999,15(6):10-13. doi: 10.3321/j.issn:1000-7555.1999.06.003http://dx.doi.org/10.3321/j.issn:1000-7555.1999.06.003
CHEN D Z, YU X H. Second-order nonlinear optical liquid crystalline polymers [J]. Polymer Materials Science and Engineering, 1999, 15(6): 10-13. (in Chinese). doi: 10.3321/j.issn:1000-7555.1999.06.003http://dx.doi.org/10.3321/j.issn:1000-7555.1999.06.003
王再江,王炳奎.电场诱导向列相液晶二阶线性光学效应[J].量子电子学,1994,11(3):134-139.
WANG Z J, WANG B K. Electric field-induced second harmonic generation of nematic liquid crystal [J]. Chinese Journal of Quantum Electronics, 1994, 11(3): 134-139. (in Chinese)
FUH A Y, HUANG C, LAU C, et al. Studies of second harmonic generation in liquid crystal-polymer mixtures[J]. Japanese Journal of Applied Physics, 1997, 36(11): 6832-6838. doi: 10.1143/jjap.36.6832http://dx.doi.org/10.1143/jjap.36.6832
WANG L, QIU H S, JIN P, et al. THz generation by optical rectification of femtosecond laser pulses in a liquid crystal [J]. Journal of the Optical Society of America B, 2022, 39(3): A89-A93. doi: 10.1364/josab.445568http://dx.doi.org/10.1364/josab.445568
WANG L, LIN X W, HU W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes [J]. Light: Science & Applications, 2015, 4(2): e253. doi: 10.1038/lsa.2015.26http://dx.doi.org/10.1038/lsa.2015.26
赵祥杰,骆永全,罗飞,等.强激光诱导向列相液晶指向矢转动的数值研究[J].液晶与显示,2010,25(3):346-350. doi: 10.3969/j.issn.1007-2780.2010.03.010http://dx.doi.org/10.3969/j.issn.1007-2780.2010.03.010
ZHAO X J, LUO Y Q, LUO F, et al. Numerical research on laser induced molecular reorientation in liquid crystal [J]. Chinese Journal of Liquid Crystals and Displays, 2010, 25(3): 346-350. (in Chinese). doi: 10.3969/j.issn.1007-2780.2010.03.010http://dx.doi.org/10.3969/j.issn.1007-2780.2010.03.010
SUKHOV A V, TIMASHEV R V. Optically induced deviation from central symmetry; lattices of quadratic nonlinear susceptibility in a nematic liquid crystal [J]. Journal of Experimental and Theoretical Physics Letters, 1990, 51(7): 413-417. doi: 10.1016/0378-4371(90)90234-Jhttp://dx.doi.org/10.1016/0378-4371(90)90234-J
ENIKEEVA V A, ZOLOT’KO A S, MAKAROV V A, et al. Second harmonic generation by femtosecond pulses in nematic liquid crystal [J]. Bulletin of the Lebedev Physics Institute, 2007, 34(5): 142-145. doi: 10.3103/s106833560705003xhttp://dx.doi.org/10.3103/s106833560705003x
YUAN R, XU C T, CAO H, et al. Spin-decoupled transflective spatial light modulations enabled by a piecewise-twisted anisotropic monolayer [J]. Advanced Science, 2022, 9(23): 2202424. doi: 10.1002/advs.202202424http://dx.doi.org/10.1002/advs.202202424
SHEN Z X, ZHOU S H, GE S J, et al. Liquid crystal tunable terahertz lens with spin-selected focusing property [J]. Optics Express, 2019, 27(6): 8800-8807. doi: 10.1364/oe.27.008800http://dx.doi.org/10.1364/oe.27.008800
RUTZ F, HASEK T, KOCH M, et al. Terahertz birefringence of liquid crystal polymers [J]. Applied Physics Letters, 2006, 89(22): 221911. doi: 10.1063/1.2397564http://dx.doi.org/10.1063/1.2397564
NAKANISHI A, HAYASHI S, SATOZONO H, et al. Polarization imaging of liquid crystal polymer using terahertz difference-frequency generation source [J]. Applied Sciences, 2021, 11(21): 10260. doi: 10.3390/app112110260http://dx.doi.org/10.3390/app112110260
SHEN Z X, TANG M J, CHEN P, et al. Planar terahertz photonics mediated by liquid crystal polymers [J]. Advanced Optical Materials, 2020, 8(7): 1902124. doi: 10.1002/adom.201902124http://dx.doi.org/10.1002/adom.201902124
ZANG X F, YAO B S, CHEN L, et al. Metasurfaces for manipulating terahertz waves [J]. Light: Advanced Manufacturing, 2021, 2(2): 148-172. doi: 10.37188/lam.2021.010http://dx.doi.org/10.37188/lam.2021.010
TAO S N, SHEN Z X, YU H G, et al. Transflective spatial terahertz wave modulator [J]. Optics Letters, 2022, 47(7): 1650-1653. doi: 10.1364/ol.450764http://dx.doi.org/10.1364/ol.450764
SHEN Z X, ZHOU S H, LI X N, et al. Liquid crystal integrated metalens with tunable chromatic aberration [J]. Advanced Photonics, 2020, 2(3): 036002. doi: 10.1117/1.ap.2.3.036002http://dx.doi.org/10.1117/1.ap.2.3.036002
FU X J, SHI L, YANG J, et al. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces [J]. ACS Applied Materials & Interfaces, 2022, 14(19): 22287-22294. doi: 10.1021/acsami.2c02601http://dx.doi.org/10.1021/acsami.2c02601
LIU S, XU F, ZHAN J L, et al. Terahertz liquid crystal programmable metasurface based on resonance switching [J]. Optics Letters, 2022, 47(7): 1891-1894. doi: 10.1364/ol.452347http://dx.doi.org/10.1364/ol.452347
LIU C X, YANG F, FU X J, et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals [J]. Advanced Optical Materials, 2021, 9(22): 2100932. doi: 10.1002/adom.202100932http://dx.doi.org/10.1002/adom.202100932
WU J B, SHEN Z, GE S J, et al. Liquid crystal programmable metasurface for terahertz beam steering [J]. Applied Physics Letters, 2020, 116(13): 131104. doi: 10.1063/1.5144858http://dx.doi.org/10.1063/1.5144858
LI W L, HU X M, WU J B, et al. Dual-color terahertz spatial light modulator for single-pixel imaging [J]. Light: Science & Applications, 2022, 11(1): 191. doi: 10.1038/s41377-022-00879-5http://dx.doi.org/10.1038/s41377-022-00879-5
CHEN X Q, LI K D, ZHANG R, et al. Highly efficient ultra-broadband terahertz modulation using bidirectional switching of Liquid crystals [J]. Advanced Optical Materials, 2019, 7(24): 1901321. doi: 10.1002/adom.201901321http://dx.doi.org/10.1002/adom.201901321
HSIEH C F, YANG C S, SHIH F C, et al. Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate [J]. Optics Express, 2019, 27(7): 9933-9940. doi: 10.1364/oe.27.009933http://dx.doi.org/10.1364/oe.27.009933
ZHANG X, FAN F, JI Y Y, et al. Temperature-dependent chirality of cholesteric liquid crystal for terahertz waves [J]. Optics Letters, 2020, 45(18): 4988-4991. doi: 10.1364/ol.402226http://dx.doi.org/10.1364/ol.402226
SHIH Y H, SILALAHI H M, TSAI T I, et al. Optically tunable and thermally erasable terahertz intensity modulators using dye-doped liquid crystal cells with metasurfaces [J]. Crystals, 2021, 11(12): 1580. doi: 10.3390/cryst11121580http://dx.doi.org/10.3390/cryst11121580
JI Y Y, FAN F, ZHANG Z Y, et al. Active terahertz liquid crystal device with carbon nanotube film as both alignment layer and transparent electrodes [J]. Carbon, 2022, 190: 376-383. doi: 10.1016/j.carbon.2022.01.039http://dx.doi.org/10.1016/j.carbon.2022.01.039
JI Y Y, FAN F, XU S T, et al. Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes [J]. Carbon, 2019, 152: 865-872. doi: 10.1016/j.carbon.2019.06.084http://dx.doi.org/10.1016/j.carbon.2019.06.084
JI Y Y, FAN F, XU S T, et al. Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles [J]. Nanoscale, 2019, 11(11): 4933-4941. doi: 10.1039/c8nr09259ahttp://dx.doi.org/10.1039/c8nr09259a
JI Y Y, FAN F, ZHANG X, et al. Terahertz birefringence anisotropy and relaxation effects in polymer-dispersed liquid crystal doped with gold nanoparticles [J]. Optics Express, 2020, 28(12): 17253-17265. doi: 10.1364/oe.392773http://dx.doi.org/10.1364/oe.392773
OptronicsOphir. Pyrocam IIIHR beam profiling camera[EB/OL]. http://www.ophiropt.com/laser--measurement/beam-profilers/products/Beam-Profiling/Camera-Profiling-with-BeamGage/Pyrocam-IIIHR/http://www.ophiropt.com/laser--measurement/beam-profilers/products/Beam-Profiling/Camera-Profiling-with-BeamGage/Pyrocam-IIIHR/. doi: 10.1002/latj.201090045http://dx.doi.org/10.1002/latj.201090045
INO. MICROXCAM-384I-THz Terahertz Camera [EB/OL]. https://www.ino.ca/en/solutions/thz/microxcam-384i-thz/https://www.ino.ca/en/solutions/thz/microxcam-384i-thz/.
金飚兵,单文磊,郭旭光,等.太赫兹检测技术[J].物理,2013,42(11):770-780. doi: 10.7693/wl20131102http://dx.doi.org/10.7693/wl20131102
JIN B B, SHAN W L, GUO X G, et al. Terahertz detectors [J]. Physics, 2013, 42(11): 770-780. (in Chinese). doi: 10.7693/wl20131102http://dx.doi.org/10.7693/wl20131102
TYDEX. Golay Detectors [EB/OL]. http://www.tydexoptics.com/products/thz_devices/golay_cell/http://www.tydexoptics.com/products/thz_devices/golay_cell/. doi: 10.1117/3.952851.ch43http://dx.doi.org/10.1117/3.952851.ch43
WANG L, XIAO R W, YANG S X, et al. 3D porous graphene-assisted capsulized cholesteric liquid crystals for terahertz power visualization [J]. Optics Letters, 2020, 45(20): 5892-5895. doi: 10.1364/OL.405695http://dx.doi.org/10.1364/OL.405695
KEILMANN F, RENK K F. Visual observation of submillimeter wave laser beams [J]. Applied Physics Letters, 1971, 18(10): 452-454. doi: 10.1063/1.1653491http://dx.doi.org/10.1063/1.1653491
CHEN I A, PARK S W, CHEN G, et al. Ultra-broadband wavelength conversion sensor using thermochromic liquid crystals [C]//Proceedings of SPIE 8624, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VI. San Francisco: SPIE, 2013: 862415. doi: 10.1117/12.2012071http://dx.doi.org/10.1117/12.2012071
TADOKORO Y, NISHIKAWA T, KANG B Y, et al. Measurement of beam profiles by terahertz sensor card with cholesteric liquid crystals [J]. Optics Letters, 2015, 40(19): 4456-4459. doi: 10.1364/ol.40.004456http://dx.doi.org/10.1364/ol.40.004456
WANG L, QIU H S, PHAN T N K, et al. Visible measurement of terahertz power based on capsulized cholesteric liquid crystal film [J]. Applied Sciences, 2018, 8(12): 2580. doi: 10.3390/app8122580http://dx.doi.org/10.3390/app8122580
HUANG Z Y, CHEN H H, HUANG Y, et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam [J]. Advanced Functional Materials, 2018, 28(2): 1704363. doi: 10.1002/adfm.201704363http://dx.doi.org/10.1002/adfm.201704363
SHAHIL K M F, BALANDIN A A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials [J]. Solid State Communications, 2012, 152(15): 1331-1340. doi: 10.1016/j.ssc.2012.04.034http://dx.doi.org/10.1016/j.ssc.2012.04.034
肖芮文,肖俊羽,金萍,等.基于三维多孔石墨烯和胆甾相液晶胶囊的高效可视化太赫兹探测器[J].光学学报,2020,40(17):1704002. doi: 10.3788/aos202040.1704002http://dx.doi.org/10.3788/aos202040.1704002
XIAO R W, XIAO J Y, JIN P, et al. High-efficiency visual terahertz detector based on three-dimensional porous graphene and cholesteric liquid crystal microcapsule [J]. Acta Optica Sinica, 2020, 40(17): 1704002. (in Chinese). doi: 10.3788/aos202040.1704002http://dx.doi.org/10.3788/aos202040.1704002
LIN J, PENG Z W, LIU Y Y, et al. Laser-induced porous graphene films from commercial polymers [J]. Nature Communications, 2014, 5: 5714. doi: 10.1038/ncomms6714http://dx.doi.org/10.1038/ncomms6714
WANG Z Y, WANG G C, LIU W G, et al. Patterned laser-induced graphene for terahertz wave modulation [J]. Journal of the Optical Society of America B, 2020, 37(2): 546-551. doi: 10.1364/josab.383324http://dx.doi.org/10.1364/josab.383324
LAN J X, ZHANG R X, BAI H, et al. Tunable broadband terahertz absorber based on laser-induced graphene [J]. Chinese Optics Letters, 2022, 20(7): 073701. doi: 10.3788/col202220.073701http://dx.doi.org/10.3788/col202220.073701
ZHANG R X, ZONG G W, WU S Y, et al. Ultrathin flexible terahertz metamaterial bandstop filter based on laser-induced graphene [J]. Journal of the Optical Society of America B, 2022, 39(4): 1229-1232. doi: 10.1364/josab.451510http://dx.doi.org/10.1364/josab.451510
CHEN X, KORBLOVA E, DONG D P, et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14021-14031. doi: 10.1073/pnas.2002290117http://dx.doi.org/10.1073/pnas.2002290117
LI J X, NISHIKAWA H, KOUGO J, et al. Development of ferroelectric nematic fluids with giant-ε dielectricity and nonlinear optical properties [J]. Science Advances, 2021, 7(17): eabf5047. doi: 10.1126/sciadv.abf5047http://dx.doi.org/10.1126/sciadv.abf5047
ZHAO X H, ZHOU J C, LI J X, et al. Spontaneous helielectric nematic liquid crystals: electric analog to helimagnets [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(42): e2111101118. doi: 10.1073/pnas.2111101118http://dx.doi.org/10.1073/pnas.2111101118
LI S Q, XU X W, VEETIL R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface [J]. Science, 2019, 364(6445): 1087-1090. doi: 10.1126/science.aaw6747http://dx.doi.org/10.1126/science.aaw6747
ERGOKTAS M S, SOLEYMANI S, KAKENOV N, et al. Topological engineering of terahertz light using electrically tunable exceptional point singularities [J]. Science, 2022, 376(6589): 184-188. doi: 10.1126/science.abn6528http://dx.doi.org/10.1126/science.abn6528
WANG J Y, XIA S Q, WANG R D, et al. Topologically tuned terahertz confinement in a nonlinear photonic chip [J]. Light: Science & Applications, 2022, 11(1): 152. doi: 10.1038/s41377-022-00823-7http://dx.doi.org/10.1038/s41377-022-00823-7
KUMAR A, GUPTA M, PITCHAPPA P, et al. Topological sensor on a silicon chip [J]. Applied Physics Letters, 2022, 121(1): 011101. doi: 10.1063/5.0097129http://dx.doi.org/10.1063/5.0097129
JIANG J H, RANABHAT K, WANG X Y, et al. Active transformations of topological structures in light-driven nematic disclination networks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(23): e2122226119. doi: 10.1073/pnas.2122226119http://dx.doi.org/10.1073/pnas.2122226119
ZHANG R, MOZAFFARI A, DE PABLO J J. Logic operations with active topological defects [J]. Science Advances, 2022, 8(8): eabg9060. doi: 10.1126/sciadv.abg9060http://dx.doi.org/10.1126/sciadv.abg9060
CHOI W J, YANO K, CHA M, et al. Chiral phonons in microcrystals and nanofibrils of biomolecules [J]. Nature Photonics, 2022, 16(5): 366-373. doi: 10.1038/s41566-022-00969-1http://dx.doi.org/10.1038/s41566-022-00969-1
PANI I, MADHU P, NAJIYA N, et al. Differentiating Conformationally distinct Alzheimer’s amyloid-β oligomers using liquid crystals [J]. The Journal of Physical Chemistry Letters, 2020, 11(21): 9012-9018. doi: 10.1021/acs.jpclett.0c01867http://dx.doi.org/10.1021/acs.jpclett.0c01867
YEO W G, GUREL O, SRINIVASAN N, et al. Terahertz imaging and electromagnetic model of axon demyelination in Alzheimer’s disease [J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(6): 711-721. doi: 10.1109/tthz.2017.2739481http://dx.doi.org/10.1109/tthz.2017.2739481
0
浏览量
327
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构