浏览全部资源
扫码关注微信
1.南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院, 江苏 南京 210023
2.南京大学 现代工程与应用科学学院 固体微结构物理国家重点实验室, 江苏 南京 210093
3.东南大学 毫米波国家重点实验室, 江苏 南京 210096
[ "王 磊(1982—),男,江苏徐州人,博士,副教授,2014年于南京大学获得博士学位,主要从事液晶太赫兹光子学、超材料与石墨烯等方面的研究。E-mail:wangl@njupt.edu.cn" ]
[ "李炳祥(1982—),男,福建泉州人,博士,教授,2019年于美国肯特州立大学先进材料与液晶研究所获得博士学位,主要从事液晶、刺激响应软材料、活性物质和生物物理等方面的研究。E-mail:bxli@njupt.edu.cn" ]
[ "胡伟(1981—),男,山东日照人,博士,教授,2009年于吉林大学获得博士学位,从事液晶光子学、聚焦光控液晶层级序构、光寻址液晶调光、军民用液晶元件开发等方面的研究。E-mail:huwei@nju.edu.cn" ]
[ "陆延青(1971—),男,江苏如皋人,博士,教授,1996年于南京大学获得博士学位,主要从事微纳光学、液晶光学、光纤器件方面的研究。E-mail:yqlu@nju.edu.cn" ]
收稿日期:2022-11-08,
修回日期:2022-11-26,
纸质出版日期:2023-04-05
移动端阅览
王磊, 吴双悦, 宗顾卫, 等. 液晶太赫兹光子学研究进展[J]. 液晶与显示, 2023,38(4):419-431.
WANG Lei, WU Shuang-yue, ZONG Gu-wei, et al. Research progress of liquid crystal terahertz photonics[J]. Chinese journal of liquid crystals and displays, 2023, 38(4): 419-431.
王磊, 吴双悦, 宗顾卫, 等. 液晶太赫兹光子学研究进展[J]. 液晶与显示, 2023,38(4):419-431. DOI: 10.37188/CJLCD.2022-0370.
WANG Lei, WU Shuang-yue, ZONG Gu-wei, et al. Research progress of liquid crystal terahertz photonics[J]. Chinese journal of liquid crystals and displays, 2023, 38(4): 419-431. DOI: 10.37188/CJLCD.2022-0370.
液晶作为液态和固态之间的中间态,具有液体的流动性和晶体的各向异性,其指向矢灵活可调,从微波到紫外都有广泛应用。近年来液晶光子学在太赫兹波段展现出巨大应用前景,本文综述了基于液晶的太赫兹源、可调太赫兹器件和太赫兹探测器的研究进展,探讨了未来液晶太赫兹光子学的发展趋势,如新型铁电向列相、液晶拓扑在太赫兹领域的应用,多模式、多参量的太赫兹波按需产生、调制与探测等。
Liquid Crystal (LC), as an intermediate state between liquid and solid, has the fluidity of liquid and the anisotropy of crystal, and its director is flexible and tunable. It has a wide range of applications from microwave to ultraviolet. In recent years, LC photonics has shown great application prospects in the terahertz band. This paper reviews the research progress of LC-based terahertz sources, tunable terahertz devices and terahertz detectors, and discusses the future development of LC terahertz photonics such as ferroelectric nematic phase, liquid crystal topology, as well as multi-mode and multi-parameter on demand terahertz wave generation, modulation and detection.
XIONG J H , WU S T . Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications [J]. eLight , 2021 , 1 ( 1 ): 3 . doi: 10.1186/s43593-021-00003-x http://dx.doi.org/10.1186/s43593-021-00003-x
LI Y L , LI N N , WANG D , et al . Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size [J]. Light: Science & Applications , 2022 , 11 ( 1 ): 188 . doi: 10.1038/s41377-022-00880-y http://dx.doi.org/10.1038/s41377-022-00880-y
MAUNE H , JOST M , REESE R , et al . Microwave liquid crystal technology [J]. Crystals , 2018 , 8 ( 9 ): 355 . doi: 10.3390/cryst8090355 http://dx.doi.org/10.3390/cryst8090355
FAN Y H , LIN Y H , REN H W , et al . Fast-response and scattering-free polymer network liquid crystals for infrared light modulators [J]. Applied Physics Letters , 2004 , 84 ( 8 ): 1233 - 1235 . doi: 10.1063/1.1649816 http://dx.doi.org/10.1063/1.1649816
LIU S J , CHEN P , GE S J , et al . 3D engineering of orbital angular momentum beams via liquid-crystal geometric phase [J]. Laser & Photonics Reviews , 2022 , 16 ( 6 ): 2200118 . doi: 10.1002/lpor.202200118 http://dx.doi.org/10.1002/lpor.202200118
ZHU L , XU C T , CHEN P , et al . Pancharatnam‒Berry phase reversal via opposite-chirality-coexisted superstructures [J]. Light: Science & Applications , 2022 , 11 ( 1 ): 135 . doi: 10.1038/s41377-022-00835-3 http://dx.doi.org/10.1038/s41377-022-00835-3
周俊 , 刘盛纲 . 太赫兹生物医学应用的研究进展 [J]. 现代应用物理 , 2014 , 5 ( 2 ): 85 - 97 . doi: 10.3969/j.issn.2095-6223.2014.02.001 http://dx.doi.org/10.3969/j.issn.2095-6223.2014.02.001
ZHOU J , LIU S G . Research progress of terahertz biomedical applications [J]. Modern Applied Physics , 2014 , 5 ( 2 ): 85 - 97 . (in Chinese) . doi: 10.3969/j.issn.2095-6223.2014.02.001 http://dx.doi.org/10.3969/j.issn.2095-6223.2014.02.001
姚建铨 , 迟楠 , 杨鹏飞 , 等 . 太赫兹通信技术的研究与展望 [J]. 中国激光 , 2009 , 36 ( 9 ): 2213 - 2233 . doi: 10.3788/cjl20093609.2213 http://dx.doi.org/10.3788/cjl20093609.2213
YAO J Q , CHI N , YANG P F , et al . Study and outlook of terahertz communication technology [J]. Chinese Journal of Lasers , 2009 , 36 ( 9 ): 2213 - 2233 . (in Chinese) . doi: 10.3788/cjl20093609.2213 http://dx.doi.org/10.3788/cjl20093609.2213
TONOUCHI M . Cutting-edge terahertz technology [J]. Nature Photonics , 2007 , 1 ( 2 ): 97 - 105 . doi: 10.1038/nphoton.2007.3 http://dx.doi.org/10.1038/nphoton.2007.3
FERGUSON B , ZHANG X C . Materials for terahertz science and technology [J]. Nature Materials , 2002 , 1 ( 1 ): 26 - 33 . doi: 10.1038/nmat708 http://dx.doi.org/10.1038/nmat708
ZHANG X C , MA X F , JIN Y , et al . Terahertz optical rectification from a nonlinear organic crystal [J]. Applied Physics Letters , 1992 , 61 ( 26 ): 3080 - 3082 . doi: 10.1063/1.107968 http://dx.doi.org/10.1063/1.107968
GUIRAMAND L , NKECK J E , ROPAGNOL X , et al . Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal [J]. Photonics Research , 2022 , 10 ( 2 ): 340 - 346 . doi: 10.1364/prj.428418 http://dx.doi.org/10.1364/prj.428418
JIN Q , E Y W , WILLIAMS K , et al . Observation of broadband terahertz wave generation from liquid water [J]. Applied Physics Letters , 2017 , 111 ( 7 ): 071103 . doi: 10.1063/1.4990824 http://dx.doi.org/10.1063/1.4990824
E Y W , ZHANG L L , TSYPKIN A , et al . Progress, challenges, and opportunities of terahertz emission from liquids [J]. Journal of the Optical Society of America B , 2022 , 39 ( 3 ): A43 - A51 . doi: 10.1364/josab.446095 http://dx.doi.org/10.1364/josab.446095
KRESS M , LÖFFLER T , EDEN S , et al . Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves [J]. Optics Letters , 2004 , 29 ( 10 ): 1120 - 1122 . doi: 10.1364/ol.29.001120 http://dx.doi.org/10.1364/ol.29.001120
COOK D J , HOCHSTRASSER R M . Intense terahertz pulses by four-wave rectification in air [J]. Optics Letters , 2000 , 25 ( 16 ): 1210 - 1212 . doi: 10.1364/ol.25.001210 http://dx.doi.org/10.1364/ol.25.001210
KHOO I C . Nonlinear optics of liquid crystalline materials [J]. Physics Reports , 2009 , 471 ( 5/6 ): 221 - 267 . doi: 10.1016/j.physrep.2009.01.001 http://dx.doi.org/10.1016/j.physrep.2009.01.001
谌东中 , 余学海 . 具有二阶非线性光学特性的液晶聚合物 [J]. 高分子材料科学与工程 , 1999 , 15 ( 6 ): 10 - 13 . doi: 10.3321/j.issn:1000-7555.1999.06.003 http://dx.doi.org/10.3321/j.issn:1000-7555.1999.06.003
CHEN D Z , YU X H . Second-order nonlinear optical liquid crystalline polymers [J]. Polymer Materials Science and Engineering , 1999 , 15 ( 6 ): 10 - 13 . (in Chinese) . doi: 10.3321/j.issn:1000-7555.1999.06.003 http://dx.doi.org/10.3321/j.issn:1000-7555.1999.06.003
王再江 , 王炳奎 . 电场诱导向列相液晶二阶线性光学效应 [J]. 量子电子学 , 1994 , 11 ( 3 ): 134 - 139 .
WANG Z J , WANG B K . Electric field-induced second harmonic generation of nematic liquid crystal [J]. Chinese Journal of Quantum Electronics , 1994 , 11 ( 3 ): 134 - 139 . (in Chinese)
FUH A Y , HUANG C , LAU C , et al . Studies of second harmonic generation in liquid crystal-polymer mixtures [J]. Japanese Journal of Applied Physics , 1997 , 36 ( 11 ): 6832 - 6838 . doi: 10.1143/jjap.36.6832 http://dx.doi.org/10.1143/jjap.36.6832
WANG L , QIU H S , JIN P , et al . THz generation by optical rectification of femtosecond laser pulses in a liquid crystal [J]. Journal of the Optical Society of America B , 2022 , 39 ( 3 ): A89 - A93 . doi: 10.1364/josab.445568 http://dx.doi.org/10.1364/josab.445568
WANG L , LIN X W , HU W , et al . Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes [J]. Light: Science & Applications , 2015 , 4 ( 2 ): e253 . doi: 10.1038/lsa.2015.26 http://dx.doi.org/10.1038/lsa.2015.26
赵祥杰 , 骆永全 , 罗飞 , 等 . 强激光诱导向列相液晶指向矢转动的数值研究 [J]. 液晶与显示 , 2010 , 25 ( 3 ): 346 - 350 . doi: 10.3969/j.issn.1007-2780.2010.03.010 http://dx.doi.org/10.3969/j.issn.1007-2780.2010.03.010
ZHAO X J , LUO Y Q , LUO F , et al . Numerical research on laser induced molecular reorientation in liquid crystal [J]. Chinese Journal of Liquid Crystals and Displays , 2010 , 25 ( 3 ): 346 - 350 . (in Chinese) . doi: 10.3969/j.issn.1007-2780.2010.03.010 http://dx.doi.org/10.3969/j.issn.1007-2780.2010.03.010
SUKHOV A V , TIMASHEV R V . Optically induced deviation from central symmetry; lattices of quadratic nonlinear susceptibility in a nematic liquid crystal [J]. Journal of Experimental and Theoretical Physics Letters , 1990 , 51 ( 7 ): 413 - 417 . doi: 10.1016/0378-4371(90)90234-J http://dx.doi.org/10.1016/0378-4371(90)90234-J
ENIKEEVA V A , ZOLOT’KO A S , MAKAROV V A , et al . Second harmonic generation by femtosecond pulses in nematic liquid crystal [J]. Bulletin of the Lebedev Physics Institute , 2007 , 34 ( 5 ): 142 - 145 . doi: 10.3103/s106833560705003x http://dx.doi.org/10.3103/s106833560705003x
YUAN R , XU C T , CAO H , et al . Spin-decoupled transflective spatial light modulations enabled by a piecewise-twisted anisotropic monolayer [J]. Advanced Science , 2022 , 9 ( 23 ): 2202424 . doi: 10.1002/advs.202202424 http://dx.doi.org/10.1002/advs.202202424
SHEN Z X , ZHOU S H , GE S J , et al . Liquid crystal tunable terahertz lens with spin-selected focusing property [J]. Optics Express , 2019 , 27 ( 6 ): 8800 - 8807 . doi: 10.1364/oe.27.008800 http://dx.doi.org/10.1364/oe.27.008800
RUTZ F , HASEK T , KOCH M , et al . Terahertz birefringence of liquid crystal polymers [J]. Applied Physics Letters , 2006 , 89 ( 22 ): 221911 . doi: 10.1063/1.2397564 http://dx.doi.org/10.1063/1.2397564
NAKANISHI A , HAYASHI S , SATOZONO H , et al . Polarization imaging of liquid crystal polymer using terahertz difference-frequency generation source [J]. Applied Sciences , 2021 , 11 ( 21 ): 10260 . doi: 10.3390/app112110260 http://dx.doi.org/10.3390/app112110260
SHEN Z X , TANG M J , CHEN P , et al . Planar terahertz photonics mediated by liquid crystal polymers [J]. Advanced Optical Materials , 2020 , 8 ( 7 ): 1902124 . doi: 10.1002/adom.201902124 http://dx.doi.org/10.1002/adom.201902124
ZANG X F , YAO B S , CHEN L , et al . Metasurfaces for manipulating terahertz waves [J]. Light: Advanced Manufacturing , 2021 , 2 ( 2 ): 148 - 172 . doi: 10.37188/lam.2021.010 http://dx.doi.org/10.37188/lam.2021.010
TAO S N , SHEN Z X , YU H G , et al . Transflective spatial terahertz wave modulator [J]. Optics Letters , 2022 , 47 ( 7 ): 1650 - 1653 . doi: 10.1364/ol.450764 http://dx.doi.org/10.1364/ol.450764
SHEN Z X , ZHOU S H , LI X N , et al . Liquid crystal integrated metalens with tunable chromatic aberration [J]. Advanced Photonics , 2020 , 2 ( 3 ): 036002 . doi: 10.1117/1.ap.2.3.036002 http://dx.doi.org/10.1117/1.ap.2.3.036002
FU X J , SHI L , YANG J , et al . Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces [J]. ACS Applied Materials & Interfaces , 2022 , 14 ( 19 ): 22287 - 22294 . doi: 10.1021/acsami.2c02601 http://dx.doi.org/10.1021/acsami.2c02601
LIU S , XU F , ZHAN J L , et al . Terahertz liquid crystal programmable metasurface based on resonance switching [J]. Optics Letters , 2022 , 47 ( 7 ): 1891 - 1894 . doi: 10.1364/ol.452347 http://dx.doi.org/10.1364/ol.452347
LIU C X , YANG F , FU X J , et al . Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals [J]. Advanced Optical Materials , 2021 , 9 ( 22 ): 2100932 . doi: 10.1002/adom.202100932 http://dx.doi.org/10.1002/adom.202100932
WU J B , SHEN Z , GE S J , et al . Liquid crystal programmable metasurface for terahertz beam steering [J]. Applied Physics Letters , 2020 , 116 ( 13 ): 131104 . doi: 10.1063/1.5144858 http://dx.doi.org/10.1063/1.5144858
LI W L , HU X M , WU J B , et al . Dual-color terahertz spatial light modulator for single-pixel imaging [J]. Light: Science & Applications , 2022 , 11 ( 1 ): 191 . doi: 10.1038/s41377-022-00879-5 http://dx.doi.org/10.1038/s41377-022-00879-5
CHEN X Q , LI K D , ZHANG R , et al . Highly efficient ultra-broadband terahertz modulation using bidirectional switching of Liquid crystals [J]. Advanced Optical Materials , 2019 , 7 ( 24 ): 1901321 . doi: 10.1002/adom.201901321 http://dx.doi.org/10.1002/adom.201901321
HSIEH C F , YANG C S , SHIH F C , et al . Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate [J]. Optics Express , 2019 , 27 ( 7 ): 9933 - 9940 . doi: 10.1364/oe.27.009933 http://dx.doi.org/10.1364/oe.27.009933
ZHANG X , FAN F , JI Y Y , et al . Temperature-dependent chirality of cholesteric liquid crystal for terahertz waves [J]. Optics Letters , 2020 , 45 ( 18 ): 4988 - 4991 . doi: 10.1364/ol.402226 http://dx.doi.org/10.1364/ol.402226
SHIH Y H , SILALAHI H M , TSAI T I , et al . Optically tunable and thermally erasable terahertz intensity modulators using dye-doped liquid crystal cells with metasurfaces [J]. Crystals , 2021 , 11 ( 12 ): 1580 . doi: 10.3390/cryst11121580 http://dx.doi.org/10.3390/cryst11121580
JI Y Y , FAN F , ZHANG Z Y , et al . Active terahertz liquid crystal device with carbon nanotube film as both alignment layer and transparent electrodes [J]. Carbon , 2022 , 190 : 376 - 383 . doi: 10.1016/j.carbon.2022.01.039 http://dx.doi.org/10.1016/j.carbon.2022.01.039
JI Y Y , FAN F , XU S T , et al . Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes [J]. Carbon , 2019 , 152 : 865 - 872 . doi: 10.1016/j.carbon.2019.06.084 http://dx.doi.org/10.1016/j.carbon.2019.06.084
JI Y Y , FAN F , XU S T , et al . Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles [J]. Nanoscale , 2019 , 11 ( 11 ): 4933 - 4941 . doi: 10.1039/c8nr09259a http://dx.doi.org/10.1039/c8nr09259a
JI Y Y , FAN F , ZHANG X , et al . Terahertz birefringence anisotropy and relaxation effects in polymer-dispersed liquid crystal doped with gold nanoparticles [J]. Optics Express , 2020 , 28 ( 12 ): 17253 - 17265 . doi: 10.1364/oe.392773 http://dx.doi.org/10.1364/oe.392773
OptronicsOphir . Pyrocam IIIHR beam profiling camera [EB/OL]. http://www.ophiropt.com/laser--measurement/beam-profilers/products/Beam-Profiling/Camera-Profiling-with-BeamGage/Pyrocam-IIIHR/ http://www.ophiropt.com/laser--measurement/beam-profilers/products/Beam-Profiling/Camera-Profiling-with-BeamGage/Pyrocam-IIIHR/ . doi: 10.1002/latj.201090045 http://dx.doi.org/10.1002/latj.201090045
INO . MICROXCAM-384I-THz Terahertz Camera [EB/OL]. https://www.ino.ca/en/solutions/thz/microxcam-384i-thz/ https://www.ino.ca/en/solutions/thz/microxcam-384i-thz/ .
金飚兵 , 单文磊 , 郭旭光 , 等 . 太赫兹检测技术 [J]. 物理 , 2013 , 42 ( 11 ): 770 - 780 . doi: 10.7693/wl20131102 http://dx.doi.org/10.7693/wl20131102
JIN B B , SHAN W L , GUO X G , et al . Terahertz detectors [J]. Physics , 2013 , 42 ( 11 ): 770 - 780 . (in Chinese) . doi: 10.7693/wl20131102 http://dx.doi.org/10.7693/wl20131102
TYDEX . Golay Detectors [EB/OL]. http://www.tydexoptics.com/products/thz_devices/golay_cell/ http://www.tydexoptics.com/products/thz_devices/golay_cell/ . doi: 10.1117/3.952851.ch43 http://dx.doi.org/10.1117/3.952851.ch43
WANG L , XIAO R W , YANG S X , et al . 3D porous graphene-assisted capsulized cholesteric liquid crystals for terahertz power visualization [J]. Optics Letters , 2020 , 45 ( 20 ): 5892 - 5895 . doi: 10.1364/OL.405695 http://dx.doi.org/10.1364/OL.405695
KEILMANN F , RENK K F . Visual observation of submillimeter wave laser beams [J]. Applied Physics Letters , 1971 , 18 ( 10 ): 452 - 454 . doi: 10.1063/1.1653491 http://dx.doi.org/10.1063/1.1653491
CHEN I A , PARK S W , CHEN G , et al . Ultra-broadband wavelength conversion sensor using thermochromic liquid crystals [C]// Proceedings of SPIE 8624, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VI . San Francisco : SPIE , 2013 : 862415 . doi: 10.1117/12.2012071 http://dx.doi.org/10.1117/12.2012071
TADOKORO Y , NISHIKAWA T , KANG B Y , et al . Measurement of beam profiles by terahertz sensor card with cholesteric liquid crystals [J]. Optics Letters , 2015 , 40 ( 19 ): 4456 - 4459 . doi: 10.1364/ol.40.004456 http://dx.doi.org/10.1364/ol.40.004456
WANG L , QIU H S , PHAN T N K , et al . Visible measurement of terahertz power based on capsulized cholesteric liquid crystal film [J]. Applied Sciences , 2018 , 8 ( 12 ): 2580 . doi: 10.3390/app8122580 http://dx.doi.org/10.3390/app8122580
HUANG Z Y , CHEN H H , HUANG Y , et al . Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam [J]. Advanced Functional Materials , 2018 , 28 ( 2 ): 1704363 . doi: 10.1002/adfm.201704363 http://dx.doi.org/10.1002/adfm.201704363
SHAHIL K M F , BALANDIN A A . Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials [J]. Solid State Communications , 2012 , 152 ( 15 ): 1331 - 1340 . doi: 10.1016/j.ssc.2012.04.034 http://dx.doi.org/10.1016/j.ssc.2012.04.034
肖芮文 , 肖俊羽 , 金萍 , 等 . 基于三维多孔石墨烯和胆甾相液晶胶囊的高效可视化太赫兹探测器 [J]. 光学学报 , 2020 , 40 ( 17 ): 1704002 . doi: 10.3788/aos202040.1704002 http://dx.doi.org/10.3788/aos202040.1704002
XIAO R W , XIAO J Y , JIN P , et al . High-efficiency visual terahertz detector based on three-dimensional porous graphene and cholesteric liquid crystal microcapsule [J]. Acta Optica Sinica , 2020 , 40 ( 17 ): 1704002 . (in Chinese) . doi: 10.3788/aos202040.1704002 http://dx.doi.org/10.3788/aos202040.1704002
LIN J , PENG Z W , LIU Y Y , et al . Laser-induced porous graphene films from commercial polymers [J]. Nature Communications , 2014 , 5 : 5714 . doi: 10.1038/ncomms6714 http://dx.doi.org/10.1038/ncomms6714
WANG Z Y , WANG G C , LIU W G , et al . Patterned laser-induced graphene for terahertz wave modulation [J]. Journal of the Optical Society of America B , 2020 , 37 ( 2 ): 546 - 551 . doi: 10.1364/josab.383324 http://dx.doi.org/10.1364/josab.383324
LAN J X , ZHANG R X , BAI H , et al . Tunable broadband terahertz absorber based on laser-induced graphene [J]. Chinese Optics Letters , 2022 , 20 ( 7 ): 073701 . doi: 10.3788/col202220.073701 http://dx.doi.org/10.3788/col202220.073701
ZHANG R X , ZONG G W , WU S Y , et al . Ultrathin flexible terahertz metamaterial bandstop filter based on laser-induced graphene [J]. Journal of the Optical Society of America B , 2022 , 39 ( 4 ): 1229 - 1232 . doi: 10.1364/josab.451510 http://dx.doi.org/10.1364/josab.451510
CHEN X , KORBLOVA E , DONG D P , et al . First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: polar domains and striking electro-optics [J]. Proceedings of the National Academy of Sciences of the United States of America , 2020 , 117 ( 25 ): 14021 - 14031 . doi: 10.1073/pnas.2002290117 http://dx.doi.org/10.1073/pnas.2002290117
LI J X , NISHIKAWA H , KOUGO J , et al . Development of ferroelectric nematic fluids with giant-ε dielectricity and nonlinear optical properties [J]. Science Advances , 2021 , 7 ( 17 ): eabf5047 . doi: 10.1126/sciadv.abf5047 http://dx.doi.org/10.1126/sciadv.abf5047
ZHAO X H , ZHOU J C , LI J X , et al . Spontaneous helielectric nematic liquid crystals: electric analog to helimagnets [J]. Proceedings of the National Academy of Sciences of the United States of America , 2021 , 118 ( 42 ): e2111101118 . doi: 10.1073/pnas.2111101118 http://dx.doi.org/10.1073/pnas.2111101118
LI S Q , XU X W , VEETIL R M , et al . Phase-only transmissive spatial light modulator based on tunable dielectric metasurface [J]. Science , 2019 , 364 ( 6445 ): 1087 - 1090 . doi: 10.1126/science.aaw6747 http://dx.doi.org/10.1126/science.aaw6747
ERGOKTAS M S , SOLEYMANI S , KAKENOV N , et al . Topological engineering of terahertz light using electrically tunable exceptional point singularities [J]. Science , 2022 , 376 ( 6589 ): 184 - 188 . doi: 10.1126/science.abn6528 http://dx.doi.org/10.1126/science.abn6528
WANG J Y , XIA S Q , WANG R D , et al . Topologically tuned terahertz confinement in a nonlinear photonic chip [J]. Light: Science & Applications , 2022 , 11 ( 1 ): 152 . doi: 10.1038/s41377-022-00823-7 http://dx.doi.org/10.1038/s41377-022-00823-7
KUMAR A , GUPTA M , PITCHAPPA P , et al . Topological sensor on a silicon chip [J]. Applied Physics Letters , 2022 , 121 ( 1 ): 011101 . doi: 10.1063/5.0097129 http://dx.doi.org/10.1063/5.0097129
JIANG J H , RANABHAT K , WANG X Y , et al . Active transformations of topological structures in light-driven nematic disclination networks [J]. Proceedings of the National Academy of Sciences of the United States of America , 2022 , 119 ( 23 ): e2122226119 . doi: 10.1073/pnas.2122226119 http://dx.doi.org/10.1073/pnas.2122226119
ZHANG R , MOZAFFARI A , DE PABLO J J . Logic operations with active topological defects [J]. Science Advances , 2022 , 8 ( 8 ): eabg9060 . doi: 10.1126/sciadv.abg9060 http://dx.doi.org/10.1126/sciadv.abg9060
CHOI W J , YANO K , CHA M , et al . Chiral phonons in microcrystals and nanofibrils of biomolecules [J]. Nature Photonics , 2022 , 16 ( 5 ): 366 - 373 . doi: 10.1038/s41566-022-00969-1 http://dx.doi.org/10.1038/s41566-022-00969-1
PANI I , MADHU P , NAJIYA N , et al . Differentiating Conformationally distinct Alzheimer’s amyloid-β oligomers using liquid crystals [J]. The Journal of Physical Chemistry Letters , 2020 , 11 ( 21 ): 9012 - 9018 . doi: 10.1021/acs.jpclett.0c01867 http://dx.doi.org/10.1021/acs.jpclett.0c01867
YEO W G , GUREL O , SRINIVASAN N , et al . Terahertz imaging and electromagnetic model of axon demyelination in Alzheimer’s disease [J]. IEEE Transactions on Terahertz Science and Technology , 2017 , 7 ( 6 ): 711 - 721 . doi: 10.1109/tthz.2017.2739481 http://dx.doi.org/10.1109/tthz.2017.2739481
0
浏览量
428
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构