1.北京理工大学 材料学院, 北京 100081
2.TCL电子有限公司 研发中心, 广东 深圳 518000
[ "吴显刚(1995—),男,陕西安康人,博士研究生,2016年于北京理工大学获得学士学位,主要从事钙钛矿量子点聚合物复合纳米材料和钙钛矿发光二极管器件制备的研究。E-mail:wxg_alex@ foxmail.com" ]
[ "钟海政(1981—),男,河北邢台人,博士,教授,2008年于中国科学院化学研究所获得博士学位,主要从事量子点光学功能材料方面的研究。E-mail:hzzhong@bit.edu.cn" ]
扫 描 看 全 文
吴显刚, 季洪雷, 钟海政. 量子点液晶显示应用技术的进展与展望[J]. 液晶与显示, 2023,38(3):276-290.
WU Xian-gang, JI Hong-lei, ZHONG Hai-zheng. Technical progress and prospects of QD-LCD display[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(3):276-290.
吴显刚, 季洪雷, 钟海政. 量子点液晶显示应用技术的进展与展望[J]. 液晶与显示, 2023,38(3):276-290. DOI: 10.37188/CJLCD.2022-0368.
WU Xian-gang, JI Hong-lei, ZHONG Hai-zheng. Technical progress and prospects of QD-LCD display[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(3):276-290. DOI: 10.37188/CJLCD.2022-0368.
液晶显示是目前广泛应用的显示技术,然而常用的LED背光荧光粉的宽光谱特点限制了其色彩显示能力和总流明效率的进一步提升。量子点具有窄发射光谱和高荧光效率等优势,为提高液晶显示色彩品质和感知亮度提供了新技术路线。本文介绍了量子点液晶显示(QD-LCD)应用的结构设计和材料体系,探讨了量子点应用存在的材料稳定性、背光设计难度和制备成本等问题。针对液晶显示应用的低成本、低毒性和易集成需求,讨论了钙钛矿量子点的应用前景,特别是进一步扩展量子点适用性的解决方案,如彩膜透过率光谱交叉、偏振片的能量损失等问题。
Liquid crystal display (LCD) is the most widely used display technology in our life, however there are still room to improve the color performance and energy efficiency. Quantum dots (QDs) have the advantages of narrow spectrum emission and high quantum efficiency, which play a key role in improving the color quality and perceived brightness of LCD display. This paper introduces the optical design of QD-LCD, the stability issues of QDs, as well as the challenges in backlight integration. Based on the analysis of QD-LCD's requirements of low cost, low toxicity and easy integration, the industrial prospects of perovskite QDs are discussed. Finally, we present the future directions of QD-LCD, especially the problems of spectral cross of color filters and the energy loss of polarizer.
液晶显示背光量子点钙钛矿量子点彩膜
LCDbacklightsquantum dotsperovskite quantum dotscolor filter
KAWAMOTO H. The history of liquid-crystal displays [J]. Proceedings of the IEEE, 2002, 90(4): 460-500. doi: 10.1109/jproc.2002.1002521http://dx.doi.org/10.1109/jproc.2002.1002521
WitsView. Global LCD TV panel unit shipments from H1 2016 to H1 2020, by vendor [R]. Hamburg: Statista, 2020.
LUO Z Y, CHEN Y, XU D M, et al. Is quantum-dot LCD ready for prime time? [C]//Proceedings of the 2014 IEEE Photonics Conference. San Diego: IEEE, 2014. doi: 10.1109/ipcon.2014.6995199http://dx.doi.org/10.1109/ipcon.2014.6995199
XIE R J, HIROSAKI N, TAKEDA T. Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes [J]. Applied Physics Express, 2009, 2(2): 022401. doi: 10.1143/apex.2.022401http://dx.doi.org/10.1143/apex.2.022401
ANANDAN M. Progress of LED backlights for LCDs [J]. Journal of the Society for Information Display, 2008, 16(2): 287-310. doi: 10.1889/1.2841864http://dx.doi.org/10.1889/1.2841864
JIANG Y, LI Y F, LI Y Q, et al. Realization of high-luminous-efficiency InGaN light-emitting diodes in the “green gap” range [J]. Scientific Reports, 2015, 5(1): 10883. doi: 10.1038/srep10883http://dx.doi.org/10.1038/srep10883
SHU Y F, LIN X, QIN HY, et al. Quantum dots for display applications [J]. Angewandte Chemie International Edition, 2020, 59(50): 22312-22323. doi: 10.1002/anie.202004857http://dx.doi.org/10.1002/anie.202004857
季洪雷,周青超,潘俊,等.量子点液晶显示背光技术[J].中国光学,2017,10(5):666-680. doi: 10.3788/co.20171005.0666http://dx.doi.org/10.3788/co.20171005.0666
JI H L, ZHOU Q C, PAN J, et al. Advances and prospects in quantum dots based backlights [J]. Chinese Optics, 2017, 10(5): 666-680. (in Chinese). doi: 10.3788/co.20171005.0666http://dx.doi.org/10.3788/co.20171005.0666
ZHONG H Z. Emerging materials and processes for quantum dots based display technology [J]. SID Symposium Digest of Technical Papers, 2015, 46(S1): 42. doi: 10.1002/sdtp.10519http://dx.doi.org/10.1002/sdtp.10519
LUO Z Y, XU D M, WU S T. Emerging quantum-dots-enhanced LCDs [J]. Journal of Display Technology, 2014, 10(7): 526-539. doi: 10.1109/jdt.2014.2325218http://dx.doi.org/10.1109/jdt.2014.2325218
JANG E. Environmentally friendly quantum dots for display applications [C]//Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM). San Francisco: IEEE, 2018. doi: 10.1109/iedm.2018.8614647http://dx.doi.org/10.1109/iedm.2018.8614647
LEE E, WANG C M, YUREK J, et al. A new frontier for quantum dots in displays [J]. Information Display, 2018, 34(6): 10-13. doi: 10.1002/j.2637-496x.2018.tb01132.xhttp://dx.doi.org/10.1002/j.2637-496x.2018.tb01132.x
LIN S Y, TAN G J, YU J H, et al. Multi-primary-color quantum-dot down-converting films for display applications [J]. Optics Express, 2019, 27(20): 28480-28493. doi: 10.1364/oe.27.028480http://dx.doi.org/10.1364/oe.27.028480
ERDEM T, DEMIR H V. Color science of nanocrystal quantum dots for lighting and displays [J]. Nanophotonics, 2013, 2(1): 57-81. doi: 10.1515/nanoph-2012-0031http://dx.doi.org/10.1515/nanoph-2012-0031
DEMIR H V, NIZAMOGLU S, ERDEM T, et al. Quantum dot integrated LEDs using photonic and excitonic color conversion [J]. Nano Today, 2011, 6(6): 632-647. doi: 10.1016/j.nantod.2011.10.006http://dx.doi.org/10.1016/j.nantod.2011.10.006
DUPONT D. Study of the reconstruction of reflectance curves based on tristimulus values: Comparison of methods of optimization [J]. Color Res. Appl., 2002, 27: 88-99. doi: 10.1002/col.10031http://dx.doi.org/10.1002/col.10031
LUO Z D, CHEN Y, WU S T. Wide color gamut LCD with a quantum dot backlight [J]. Optics Express, 2013, 21(22): 26269-26284. doi: 10.1364/oe.21.026269http://dx.doi.org/10.1364/oe.21.026269
LEE E, WANG C M, HOTZ C, et al. “Greener” quantum-dot enabled LCDs with BT. 2020 color gamut [J]. SID Symposium Digest of Technical Papers, 2016, 47(1): 549-551. doi: 10.1002/sdtp.10718http://dx.doi.org/10.1002/sdtp.10718
ZHU Y L, LIANG Y J, LIU S Q, et al. Narrow-band green-emitting Sr2MgAl22O36∶Mn2+ phosphors with superior thermal stability and wide color gamut for backlighting display applications [J]. Advanced Optical Materials, 2019, 7(6): 1801419. doi: 10.1002/adom.201801419http://dx.doi.org/10.1002/adom.201801419
ZHAO M, LIAO H X, NING L X, et al. Next-generation narrow-band green-emitting RbLi(Li3SiO4)2∶Eu2+ phosphor for backlight display application [J]. Advanced Materials, 2018, 30(38): 1802489. doi: 10.1002/adma.201802489http://dx.doi.org/10.1002/adma.201802489
ZHU R D, LUO Z Y, CHEN H W, et al. Realizing Rec. 2020 color gamut with quantum dot displays [J]. Optics Express, 2015, 23(18): 23680-23693. doi: 10.1364/oe.23.023680http://dx.doi.org/10.1364/oe.23.023680
CHEN H W, HE J, WU S T. Recent advances on quantum-dot-enhanced liquid-crystal displays [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(5): 1-11. doi: 10.1109/jstqe.2017.2649466http://dx.doi.org/10.1109/jstqe.2017.2649466
季洪雷,程尚君,李鹏飞,等.量子点背光液晶显示技术的亥姆霍兹-科尔劳施效应[J].中国光学,2022,15(1):132-143. doi: 10.37188/CO.2021-0058http://dx.doi.org/10.37188/CO.2021-0058
JI H L, CHENG S J, LI P F, et al. Illustrating the Helmholtz-Kohlrausch effect of quantum dots enhanced LCD through a comparative study [J]. Chinese Optics, 2022, 15(1): 132-143. (in Chinese). doi: 10.37188/CO.2021-0058http://dx.doi.org/10.37188/CO.2021-0058
NAKAGAWA K, HAYAMI Y, AOYANAGI H, et al. Estimating the Helmholtz-Kohlrausch effect in natural images considering the decreasing brightness-to-luminance ratio with increasing lightness [J]. Journal of the Society for Information Display, 2021, 29(6): 476-488. doi: 10.1002/jsid.987http://dx.doi.org/10.1002/jsid.987
TWIETMEYER K, SADASIVAN S. Design considerations for highly efficient edge-lit quantum dot displays [J]. Journal of the Society for Information Display, 2016, 24(5): 312-322. doi: 10.1002/jsid.436http://dx.doi.org/10.1002/jsid.436
STECKEL J S, HO J, HAMILTON C, et al. Quantum dots: The ultimate down-conversion material for LCD displays [J]. Journal of the Society for Information Display, 2015, 23(7): 294-305. doi: 10.1002/jsid.313http://dx.doi.org/10.1002/jsid.313
KURTIN J, PUETZ N, THEOBALD B, et al. Quantum dots for high color gamut LCD displays using an On-Chip LED solution [J]. SID Symposium Digest of Technical Papers, 2014, 45(1): 146-148. doi: 10.1002/j.2168-0159.2014.tb00040.xhttp://dx.doi.org/10.1002/j.2168-0159.2014.tb00040.x
TANG J L, LI F, YANG G L, et al. Reducing the chromaticity shifts of light-emitting diodes using gradient-alloyed CdxZn1-xSeyS1-y@ZnS core shell quantum dots with enhanced high-temperature photoluminescence [J]. Advanced Optical Materials, 2019, 7(10): 1801687. doi: 10.1002/adom.201801687http://dx.doi.org/10.1002/adom.201801687
TANG J L, LI F, YANG G L, et al. Reducing chromaticity shifts of light emitting diodes using gradient alloyed CdxZn1-xSeyS1-y@ZnS core shell quantum dots [J]. SID Symposium Digest of Technical Papers, 2019, 50(S1): 702. doi: 10.1002/sdtp.13617http://dx.doi.org/10.1002/sdtp.13617
SWARNKAR A, CHULLIYIL R, RAVI V K, et al. Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots [J]. Angewandte Chemie International Edition, 2015, 54(51): 15424-15428. doi: 10.1002/anie.201508276http://dx.doi.org/10.1002/anie.201508276
YOON H C, LEE S, SONG J K, et al. Efficient and stable CsPbBr3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix [J]. ACS Applied Materials & Interfaces, 2018, 10(14): 11756-11767. doi: 10.1021/acsami.8b01014http://dx.doi.org/10.1021/acsami.8b01014
LIU M M, WAN Q, WANG H M, et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes [J]. Nature Photonics, 2021, 15(5): 379-385. doi: 10.1038/s41566-021-00766-2http://dx.doi.org/10.1038/s41566-021-00766-2
KANG Y Y, SONG Z C, JIANG X F, et al. Quantum dots for wide color gamut displays from photoluminescence to electroluminescence [J]. Nanoscale Research Letters, 2017, 12(1): 154. doi: 10.1186/s11671-017-1907-1http://dx.doi.org/10.1186/s11671-017-1907-1
CHEN J, HARDEV V, YUREK J. Quantum-dot displays: giving LCDs a competitive edge through color [J]. Information Display, 2013, 29(1): 12-17. doi: 10.1002/j.2637-496x.2013.tb00578.xhttp://dx.doi.org/10.1002/j.2637-496x.2013.tb00578.x
MERTENS R. DSCC sees the QDEF market reaching $326 million by 2025 [R]. Ra'anana: Metalgrass Ltd., 2022.
KIM G, SHIH Y C, SHI F G. Optimal design of a quantum dot color conversion film in LCD backlighting [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(5): 1-4. doi: 10.1109/jstqe.2017.2677898http://dx.doi.org/10.1109/jstqe.2017.2677898
WU X G, JI H L, YAN X L, et al. Industry outlook of perovskite quantum dots for display applications [J]. Nature Nanotechnology, 2022, 17(8): 813-816. doi: 10.1038/s41565-022-01163-8http://dx.doi.org/10.1038/s41565-022-01163-8
DEY A, YE J Z, DE A, et al. State of the art and prospects for halide perovskite nanocrystals [J]. ACS Nano, 2021, 15(7): 10775-10981.
ZHANG T, BAI Z L, LI J, et al. Hybrid composite films with perovskite quantum dots and red phosphors for LCD display backlights [J]. SID Symposium Digest of Technical Papers, 2021, 52(1): 912-913. doi: 10.1002/sdtp.14834http://dx.doi.org/10.1002/sdtp.14834
JI H L, XU H S, JIANG F, et al. Hybrid backlight system based on blue, red LEDs and perovskite quantum dots for liquid crystal display application [J]. SID Symposium Digest of Technical Papers, 2019, 50(S1): 411-413. doi: 10.1002/sdtp.13513http://dx.doi.org/10.1002/sdtp.13513
ZHOU Q C, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights [J]. Advanced Materials, 2016, 28(41): 9163-9168. doi: 10.1002/adma.201602651http://dx.doi.org/10.1002/adma.201602651
HAN T H, JANG K Y, DONG Y T, et al. A roadmap for the commercialization of perovskite light emitters [J]. Nature Reviews Materials, 2022, 7(10): 757-777. doi: 10.1038/s41578-022-00459-4http://dx.doi.org/10.1038/s41578-022-00459-4
MAES J, BALCAEN L, DRIJVERS E, et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals [J]. The Journal of Physical Chemistry Letters, 2018, 9(11): 3093-3097. doi: 10.1021/acs.jpclett.8b01065http://dx.doi.org/10.1021/acs.jpclett.8b01065
LI J Z, CHEN J L, SHEN Y M, et al. Extinction coefficient per CdE (Ehttp://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41147541&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41147538&type=3.217333321.94733346Se or S) unit for zinc-blende CdE nanocrystals [J]. Nano Research, 2018, 11(8): 3991-4004. doi: 10.1007/s12274-018-1981-4http://dx.doi.org/10.1007/s12274-018-1981-4
GAPONIK N, TALAPIN D V, ROGACH A L, et al. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes [J]. The Journal of Physical Chemistry B, 2002, 106(29): 7177-7185. doi: 10.1021/jp025541khttp://dx.doi.org/10.1021/jp025541k
BAI Z L, LI J, ZHANG T, et al. In-situ fabrication strategy of perovskite quantum dots for novel display technology [J]. SID Symposium Digest of Technical Papers, 2021, 52(S1): 295. doi: 10.1002/sdtp.14467http://dx.doi.org/10.1002/sdtp.14467
CHEN N J, BAI Z L, WANG Z M, et al. Low cost perovskite quantum dots film based wide color gamut backlight unit for LCD TVs [J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 1657-1659. doi: 10.1002/sdtp.12303http://dx.doi.org/10.1002/sdtp.12303
LI F, JI H L, XU H S, et al. High color gamut mini-LED backlight demon based on dual-emissive perovskite quantum dots films [J]. SID Symposium Digest of Technical Papers, 2020, 51(1): 219-221. doi: 10.1002/sdtp.13842http://dx.doi.org/10.1002/sdtp.13842
GAO Z W, NING H L, YAO R H, et al. Mini-LED backlight technology progress for liquid crystal display [J]. Crystals, 2022, 12(3): 313. doi: 10.3390/cryst12030313http://dx.doi.org/10.3390/cryst12030313
CHEN G H, YANG S H, YEH C W, et al. Polycarbonate light guide plates with embedded quantum dots fabricated by large-scale injection moulding for wide colour gamut displays [J]. Materials & Design, 2021, 201: 109504. doi: 10.1016/j.matdes.2021.109504http://dx.doi.org/10.1016/j.matdes.2021.109504
WANG Z T, FU R, LI F, et al. One-step polymeric melt encapsulation method to prepare CsPbBr3 perovskite quantum dots/polymethyl methacrylate composite with high performance [J]. Advanced Functional Materials, 2021, 31(22): 2010009. doi: 10.1002/adfm.202010009http://dx.doi.org/10.1002/adfm.202010009
HUANG B L, GUO T L, XU S, et al. Color converting film with quantum-dots for the liquid crystal displays based on inkjet printing [J]. IEEE Photonics Journal, 2019, 11(3): 1-9. doi: 10.1109/jphot.2019.2911308http://dx.doi.org/10.1109/jphot.2019.2911308
CHEN H W, ZHU R D, HE J, et al. Going beyond the limit of an LCD’s color gamut [J]. Light: Science & Applications, 2017, 6(9): e17043. doi: 10.1038/lsa.2017.43http://dx.doi.org/10.1038/lsa.2017.43
KIM H J, SHIN M H, LEE J Y, et al. Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film [J]. Optics Express, 2017, 25(10): 10724-10734. doi: 10.1364/oe.25.010724http://dx.doi.org/10.1364/oe.25.010724
SRIVASTAVA A K, ZHANG W L, SCHNEIDER J, et al. Luminescent down-conversion semiconductor quantum dots and aligned quantum rods for liquid crystal displays [J]. Advanced Science, 2019, 6(22): 1901345. doi: 10.1002/advs.201901345http://dx.doi.org/10.1002/advs.201901345
GE Y, MENG L H, BAI Z L, et al. Linearly polarized photoluminescence from anisotropic perovskite nanostructures: emerging materials for display technology [J]. Journal of Information Display, 2019, 20(4): 181-192. doi: 10.1080/15980316.2019.1654550http://dx.doi.org/10.1080/15980316.2019.1654550
MENG L H, YANG C G, MENG J J, et al. In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission [J]. Nano Research, 2019, 12(6): 1411-1416. doi: 10.1007/s12274-019-2353-4http://dx.doi.org/10.1007/s12274-019-2353-4
GE Y, ZHANG M J, WANG L, et al. Polarization-sensitive ultraviolet detection from oriented-CdSe@CdS-dot-in-rods-integrated silicon photodetector [J]. Advanced Optical Materials, 2019, 7(18): 1900330. doi: 10.1002/adom.201900330http://dx.doi.org/10.1002/adom.201900330
HASEGAWA K, MIZUGUCHI M, SAKURABA Y, et al. Material dependence of anomalous Nernst effect in perpendicularly magnetized ordered-alloy thin films [J]. Applied Physics Letters, 2015, 106(25): 252405. doi: 10.1063/1.4922901http://dx.doi.org/10.1063/1.4922901
LU W G, WU X G, HUANG S, et al. Strong polarized photoluminescence from stretched perovskite-nanocrystal-embedded polymer composite films [J]. Advanced Optical Materials, 2017, 5(23): 1700594. doi: 10.1002/adom.201700594http://dx.doi.org/10.1002/adom.201700594
MUSKENS O L, BACHELIER G, DEL FATTI N, et al. Quantitative absorption spectroscopy of a single gold nanorod [J]. The Journal of Physical Chemistry C, 2008, 112(24): 8917-8921. doi: 10.1021/jp8012865http://dx.doi.org/10.1021/jp8012865
0
浏览量
292
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构