1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100049
3.中科聚研(吉林)干细胞科技有限公司, 吉林 吉林 132000
[ "吴沛霖(1997—),男,吉林长春人,硕士研究生,2020年于吉林大学获得学士学位,主要从事计算显微成像方面的研究。E-mail:wupeilin20@mails.ucas.ac.cn" ]
[ "李大禹(1979—),男,吉林长春人,博士,副研究员,2007年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事智能光学与计算显微成像的研究。E-mail:lidayu20@ ciomp.ac.cn" ]
扫 描 看 全 文
吴沛霖, 彭增辉, 穆全全, 等. 基于四象限液晶器件的差分相衬成像系统[J]. 液晶与显示, 2023,38(4):456-461.
WU Pei-lin, PENG Zeng-hui, MU Quan-quan, et al. Differential phase contrast imaging system based four quadrants liquid crystal device[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(4):456-461.
吴沛霖, 彭增辉, 穆全全, 等. 基于四象限液晶器件的差分相衬成像系统[J]. 液晶与显示, 2023,38(4):456-461. DOI: 10.37188/CJLCD.2022-0367.
WU Pei-lin, PENG Zeng-hui, MU Quan-quan, et al. Differential phase contrast imaging system based four quadrants liquid crystal device[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(4):456-461. DOI: 10.37188/CJLCD.2022-0367.
在显微成像领域中,高成像质量图像的获取与良好的照明方式息息相关。传统显微镜使用聚光透镜来提供均匀强度的照明,调节聚光透镜的光阑匹配不同放大倍率的物镜。然而无色生物细胞的光学吸收系数低,在传统显微镜下难以观测到其细节信息。为了突破传统显微镜的成像功能,本文设计了一种可调控的显微镜聚光镜模块,通过将小型扭曲液晶器件嵌入聚光透镜的后焦面处,调控液晶器件的对光的透过效果可以实现明场成像以及差分相衬成像。系统由一款商用显微镜改装而成,液晶器件尺寸为22 mm×18 mm,实现了系统的高度集成化。通过实验验证了系统的成像性能,实现了对微凸透镜样品的定量相位重建,实验与理论曲线的互相关系数达到0.994 9,并且通过胚胎干细胞的重建展示了系统在实际应用中的效果。
In the field of microscopic imaging, the acquisition of high-quality images is closely related to good illumination mode. Traditional microscopes use a condensing lens to provide illumination with uniform intensity and adjust the aperture of the condensing lens to match the objective lenses with different magnification. However, it is difficult to observe the details of colorless biological cells which optical absorption coefficient is low under the traditional microscope. In order to improve the imaging capacity of traditional microscopes, this paper designs a kind of adjustable microscope condenser module. Bright field imaging and differential phase contrast imaging can be achieved by embedding a small twisted liquid crystal device in the back focal plane of the condenser lens to regulate the light transmission effect of the liquid crystal device. The system is refitted from a commercial microscope. The size of the liquid crystal device is 22 mm×18 mm, which realizes the high integration of the system. The imaging performance of the system is verified through experiments and the correlation coefficient between experimental and theoretical curves reaches 0.994 9. The reconstruction of embryonic stem cells shows the effect of the system in practical application.
显微镜计算成像差分相衬成像
microscopycomputational imagingdifferential phase contrast imaging
ICHA J, WEBER M, WATERS J C, et al. Phototoxicity in live fluorescence microscopy, and how to avoid it [J]. BioEssays, 2017, 39(8): 1700003. doi: 10.1002/bies.201700003http://dx.doi.org/10.1002/bies.201700003
LI J J, ZHOU N, SUN J S, et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy [J]. Light: Science & Applications, 2022, 11(1): 154. doi: 10.1038/s41377-022-00815-7http://dx.doi.org/10.1038/s41377-022-00815-7
LUO Y, ZHAO Y F, LI J X, et al. Computational imaging without a computer: seeing through random diffusers at the speed of light [J]. eLight, 2022, 2: 4. doi: 10.1186/s43593-022-00012-4http://dx.doi.org/10.1186/s43593-022-00012-4
ARNISON M R, LARKIN K G, SHEPPARD C J R, et al. Linear phase imaging using differential interference contrast microscopy [J]. Journal of Microscopy, 2004, 214(1): 7-12. doi: 10.1111/j.0022-2720.2004.01293.xhttp://dx.doi.org/10.1111/j.0022-2720.2004.01293.x
HAMILTON D K, SHEPPARD C J R. Differential phase contrast in scanning optical microscopy [J]. Journal of Microscopy, 1984, 133(1): 27-39. doi: 10.1111/j.1365-2818.1984.tb00460.xhttp://dx.doi.org/10.1111/j.1365-2818.1984.tb00460.x
GUO K K, BIAN Z C, DONG S Y, et al. Microscopy illumination engineering using a low-cost liquid crystal display [J]. Biomedical Optics Express, 2015, 6(2): 574-579. doi: 10.1364/boe.6.000574http://dx.doi.org/10.1364/boe.6.000574
TIAN L, WALLER L. Quantitative differential phase contrast imaging in an LED array microscope [J]. Optics Express, 2015, 23(9): 11394-11403. doi: 10.1364/oe.23.011394http://dx.doi.org/10.1364/oe.23.011394
ZUO C, SUN J S, FENG S J, et al. Programmable aperture microscopy: a computational method for multi-modal phase contrast and light field imaging [J]. Optics and Lasers in Engineering, 2016, 80: 24-31. doi: 10.1016/j.optlaseng.2015.12.012http://dx.doi.org/10.1016/j.optlaseng.2015.12.012
HAMILTON D K, SHEPPARD C J R, WILSON T. Improved imaging of phase gradients in scanning optical microscopy [J]. Journal of Microscopy, 1984, 135(3): 275-286. doi: 10.1111/j.1365-2818.1984.tb02533.xhttp://dx.doi.org/10.1111/j.1365-2818.1984.tb02533.x
STREIBL N. Three-dimensional imaging by a microscope [J]. Journal of the Optical Society of America A, 1985, 2(2): 121-127. doi: 10.1364/josaa.2.000121http://dx.doi.org/10.1364/josaa.2.000121
BORN M. Principles of optics-electromagnetic theory of propagation, interference and diffraction of light [J]. Diffraction Theory, 1975: 568-574.
MEHTA S B, SHEPPARD C J R. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast [J]. Optics Letters, 2009, 34(13): 1924-1926. doi: 10.1364/ol.34.001924http://dx.doi.org/10.1364/ol.34.001924
黄子强.液晶显示原理[M].2版.北京:国防工业出版社,2013. doi: 10.21236/ada276415http://dx.doi.org/10.21236/ada276415
HUANG Z Q. Principle of Liquid Crystal Display [M]. 2nd ed. Beijing: National Defense Industry Press, 2013. (in Chinese). doi: 10.21236/ada276415http://dx.doi.org/10.21236/ada276415
CHEN Y J, LIN Y Z, VYAS S, et al. Time-lapse imaging using dual-color coded quantitative differential phase contrast microscopy [J]. Journal of Biomedical Optics, 2022, 27(5): 056002. doi: 10.1117/1.jbo.27.5.056002http://dx.doi.org/10.1117/1.jbo.27.5.056002
0
浏览量
258
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构