1.纳晶科技股份有限公司 纳晶研究院, 浙江 杭州 310052
[ "余世荣(1988—), 男,浙江杭州人,硕士,工程师,2015年于厦门大学获得硕士学位,主要从事显示材料开发及产品应用方面的研究。E-mail:yushirong@ najingtech.com" ]
[ "康永印(1981—),男,河南南阳人,博士,正高级工程师,2010年于中国科学院上海微系统与信息技术研究所获得博士学位,主要从事发光材料研发及应用研究。E-mail:332758417@qq.com" ]
扫 描 看 全 文
余世荣, 康永印, 王海琳, 等. 应用于液晶显示背光的量子点光转换膜研究进展[J]. 液晶与显示, 2023,38(3):291-303.
YU Shi-rong, KANG Yong-yin, WANG Hai-lin, et al. Research progress of quantum dot light conversion films for backlight in liquid crystal displays[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(3):291-303.
余世荣, 康永印, 王海琳, 等. 应用于液晶显示背光的量子点光转换膜研究进展[J]. 液晶与显示, 2023,38(3):291-303. DOI: 10.37188/CJLCD.2022-0365.
YU Shi-rong, KANG Yong-yin, WANG Hai-lin, et al. Research progress of quantum dot light conversion films for backlight in liquid crystal displays[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(3):291-303. DOI: 10.37188/CJLCD.2022-0365.
胶体量子点由于具有宽吸收、窄发射、可溶液加工等优异光学特性,可以赋能液晶显示技术实现高色域的画质效果而获得越来越多的产业应用,目前应用范围较广的产品为量子点光转换膜。典型的量子点光转换膜为上下阻隔膜加中间量子点树脂的三明治结构:上下阻隔膜起到隔绝水、氧,实现保护量子点中间层的作用;量子点树脂层为实现量子点光转换效果的重要载体,一般包含红色和绿色量子点材料,在背光蓝色LED的激发下发射红光和绿光,并与透过的蓝光一起实现R/G/B的三基色白光,可以实现100% NTSC以上色域覆盖。量子点光转换膜从最开始昂贵的高阻隔(10,-3,~10,-4, g·m,-2,·day,-1,)方案逐渐发展为高性价比的较低阻隔(10,-1, g·m,-2,·day,-1,)技术方案,进而使产品应用得到普及。其产品形态也从最开始的大尺寸电视产品1 397~2 159 mm (55~85 in),逐步渗透到显示器、笔记本、车载、平板、VR以及可穿戴等中小尺寸显示产品等。因其能够大幅提高产品的色彩显现力和产品附加值,从而获得品牌客户和消费者越来越多的认可。本文从量子点光转换膜的结构、功能着手,综述了量子点光转换膜的技术发展过程、最新的研究进展、标准研制情况以及市场发展趋势等。
Colloidal quantum dots (QDs), due to their excellent optical property, such as broad absorb range, narrow emission and solution processability, have received more widespread application in liquid crystal display, enabling the wide color gamut, with quantum dot light conversion film (Q-LCF) as the main commercial product. Typical Q-LCF structure is a sandwich structure with a layer of QD containing resin between two barrier films. The barrier film plays the role of preventing the QD resin from water and oxygen to protect the QD, the key material to realize the optical conversion performance. Generally, QD resin includes red and green quantum dots, which emit red and green light under the excitation of the backlight blue LED, and achieve RGB three primary colors, together with the transmitted blue light. The Q-LCF has gradually developed from using the expensive high grade barrier films(10,-3,~10,-4, g·m,-2,·day,-1,) to the cost-effective low grade barrier films(10,-1, g·m,-2,·day,-1,), which makes the Q-LCF spencentrating widely in LCD products, starting from large size TV products 1 397~2 159 mm(55~85 in), to monitor, laptop, automotive tablet, VR display and wearable products. For its greatly improved the color display capacity and added value of products, the Q-LCF has gained more and more recognition from brand customers and end users. Based on the structure and function of Q-LCF, this paper reviews the technological development process and discusses the latest research progress, technology, standard and market development trend of Q-LCF.
量子点光转换阻隔膜光谱优化高色域标准化可靠性
quantum dotquantum dot light conversion filmbarrier filmspectrum optimizationwide color gamutstandardizationreliability
张锋,薛建设,喻志农,等.量子点发光在显示器件中的应用[J].液晶与显示,2012,27(2):163-167. doi: 10.3788/yjyxs20122702.0163http://dx.doi.org/10.3788/yjyxs20122702.0163
ZHANG F, XUE J S, YU Z N, et al. Quantum-dot light emitting device for displays [J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(2): 163-167. (in Chinese). doi: 10.3788/yjyxs20122702.0163http://dx.doi.org/10.3788/yjyxs20122702.0163
LIU Z J, LIN C H, HYUN B R, et al. Micro-light-emitting diodes with quantum dots in display technology [J]. Light: Science & Applications, 2020, 9: 83. doi: 10.1038/s41377-020-0268-1http://dx.doi.org/10.1038/s41377-020-0268-1
SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al. Emergence of colloidal quantum-dot light-emitting technologies [J]. Nature Photonics, 2013, 7(1): 13-23. doi: 10.1038/nphoton.2012.328http://dx.doi.org/10.1038/nphoton.2012.328
CHEN J, HARTLOVE J, HARDEV V, et al. High efficiency LCDs using quantum dot enhancement films [J]. SID Symposium Digest of Technical Papers, 2014, 45(1): 1428-1430. doi: 10.1002/j.2168-0159.2014.tb00377.xhttp://dx.doi.org/10.1002/j.2168-0159.2014.tb00377.x
KANG H, KIM S, OH J H, et al. Color-by-blue QD-emissive LCD enabled by replacing RGB color filters with narrow-band GR InP/ZnSeS/ZnS QD films [J]. Advanced Optical Materials, 2018, 6(11): 1701239. doi: 10.1002/adom.201701239http://dx.doi.org/10.1002/adom.201701239
HUANG B L, CHEN E G, SUN L, et al. Quantum-dot color conversion film patterned by screen printing and overprinting process for display backlights [J]. Optics & Laser Technology, 2022, 145: 107486. doi: 10.1016/j.optlastec.2021.107486http://dx.doi.org/10.1016/j.optlastec.2021.107486
XIONG J H, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications [J]. eLight, 2021, 1: 3. doi: 10.1186/s43593-021-00003-xhttp://dx.doi.org/10.1186/s43593-021-00003-x
康永印,宋志成,乔培胜,等.光致发光胶体量子点研究及应用[J].化学进展,2017,29(5):467-475. doi: 10.7536/PC170216http://dx.doi.org/10.7536/PC170216
KANG Y Y, SONG Z C, QIAO P S, et al. Research and application of photo-luminescent colloidal quantum dots [J]. Progress in Chemistry, 2017, 29(5): 467-475. (in Chinese). doi: 10.7536/PC170216http://dx.doi.org/10.7536/PC170216
CHEN J, HARDEV V, HARTLOVE J, et al. A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film [J]. SID Symposium Digest of Technical Papers, 2012, 43(1): 895-896. doi: 10.1002/j.2168-0159.2012.tb05931.xhttp://dx.doi.org/10.1002/j.2168-0159.2012.tb05931.x
LUO Z Y, CHEN Y, WU S T. Wide color gamut LCD with a quantum dot backlight [J]. Optics Express, 2013, 21(22): 26269-26284. doi: 10.1364/oe.21.026269http://dx.doi.org/10.1364/oe.21.026269
CHEN J, GENSLER S, HARTLOVE J, et al. Quantum dots: optimizing LCD systems to achieve rec. 2020 color performance [J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 173-175. doi: 10.1002/sdtp.10292http://dx.doi.org/10.1002/sdtp.10292
CHEN H W, ZHU R D, KÄLÄNTÄR, K, et al. Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution [J]. SID Symposium Digest of Technical Papers, 2016, 47(1): 1413-1416. doi: 10.1002/sdtp.10951http://dx.doi.org/10.1002/sdtp.10951
KO Y H, PARK J G. Novel quantum dot enhancement film with a super-wide color gamut for LCD displays [J]. Journal of the Korean Physical Society, 2018, 72(1): 45-51. doi: 10.3938/jkps.72.45http://dx.doi.org/10.3938/jkps.72.45
XU B, LI X L, WANG Y Q. Wide color gamut switchable autostereoscopic 3D display based on directional quantum-dot backlight [J]. Chinese Physics B, 2019, 28(12): 124208. doi: 10.1088/1674-1056/ab53d1http://dx.doi.org/10.1088/1674-1056/ab53d1
XU B, WU Q Q, BAO Y C, et al. Time-multiplexed stereoscopic display with a quantum dot-polymer scanning backlight [J]. Applied Optics, 2019, 58(16): 4526-4532. doi: 10.1364/AO.58.004526http://dx.doi.org/10.1364/AO.58.004526
季洪雷,陈乃军,王代青,等.Mini-LED背光技术在电视产品应用中的进展和挑战[J].液晶与显示,2021,36(7):983-992. doi: 10.37188/CJLCD.2021-0042http://dx.doi.org/10.37188/CJLCD.2021-0042
JI H L, CHEN N J, WANG D Q, et al. Development and challenges in application of mini-LED backlight technology in TV products [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(7): 983-992. (in Chinese). doi: 10.37188/CJLCD.2021-0042http://dx.doi.org/10.37188/CJLCD.2021-0042
李才昌.精密涂布技术及其应用[J].绿色包装,2017(11):42-46.
LI C C. Precision coating technology and its application [J]. Green Packaging, 2017(11): 42-46. (in Chinese)
CORDERO S R, CARSON P J, ESTABROOK R A, et al. Photo-activated luminescence of CdSe quantum dot monolayers [J]. The Journal of Physical Chemistry B, 2000, 104(51): 12137-12142. doi: 10.1021/jp001771shttp://dx.doi.org/10.1021/jp001771s
VAN SARK W G J H M, FREDERIX P L T M, BOL A A, et al. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots [J]. ChemPhysChem, 2002, 3(10): 871-879. doi: 10.1002/1439-7641(20021018)3:10<871::aid-cphc871>3.0.co;2-thttp://dx.doi.org/10.1002/1439-7641(20021018)3:10<871::aid-cphc871>3.0.co;2-t
JONES M, NEDELJKOVIC J, ELLINGSON R J, et al. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions [J]. The Journal of Physical Chemistry B, 2003, 107(41): 11346-11352. doi: 10.1021/jp035598mhttp://dx.doi.org/10.1021/jp035598m
MÜLLER J, LUPTON J M, ROGACH A L, et al. Air-induced fluorescence bursts from single semiconductor nanocrystals [J]. Applied Physics Letters, 2004, 85(3): 381-383. doi: 10.1063/1.1769585http://dx.doi.org/10.1063/1.1769585
DEMBSKI S, GRAF C, KRÜGER T, et al. Photoactivation of CdSe/ZnS quantum dots embedded in silica colloids [J]. Small, 2008, 4(9): 1516-1526. doi: 10.1002/smll.200700997http://dx.doi.org/10.1002/smll.200700997
CARRILLO-CARRIÓN C, CÁRDENAS S, SIMONET B M, et al. Quantum dots luminescence enhancement due to illumination with UV/Vis light [J]. Chemical Communications, 2009(35): 5214-5226. doi: 10.1039/b904381khttp://dx.doi.org/10.1039/b904381k
PECHSTEDT K, WHITTLE T, BAUMBERG J, et al. Photoluminescence of colloidal CdSe/ZnS quantum dots: the critical effect of water molecules [J]. The Journal of Physical Chemistry C, 2010, 114(28): 12069-12077. doi: 10.1021/jp100415khttp://dx.doi.org/10.1021/jp100415k
HU Z, SHU Y F, QIN H Y, et al. Water effects on colloidal semiconductor nanocrystals: correlation of photophysics and photochemistry [J]. Journal of the American Chemical Society, 2021, 143(44): 18721-18732. doi: 10.1021/jacs.1c09363http://dx.doi.org/10.1021/jacs.1c09363
DUPONT D, TESSIER M D, SMET P F, et al. Indium phosphide-based quantum dots with shell-enhanced absorption for luminescent down-conversion [J]. Advanced Materials, 2017, 29(29): 1700686. doi: 10.1002/adma.201700686http://dx.doi.org/10.1002/adma.201700686
PAN D C, WANG Q, JIANG S C, et al. Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach [J]. Advanced Materials, 2005, 17(2): 176-179. doi: 10.1002/adma.200401425http://dx.doi.org/10.1002/adma.200401425
LO S S, MIRKOVIC T, CHUANG C H, et al. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures [J]. Advanced Materials, 2011, 23(2): 180-197. doi: 10.1002/adma.201002290http://dx.doi.org/10.1002/adma.201002290
JUN S, JANG E. Bright and stable alloy core/multishell quantum dots [J]. Angewandte Chemie International Edition, 2013, 52(2): 679-682. doi: 10.1002/anie.201206333http://dx.doi.org/10.1002/anie.201206333
LIM J, JUN S, JANG E, et al. Preparation of highly luminescent nanocrystals and their application to light-emitting diodes [J]. Advanced Materials, 2007, 19(15): 1927-1932. doi: 10.1002/adma.200602642http://dx.doi.org/10.1002/adma.200602642
KIM S, KIM T, KANG M, et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes [J]. Journal of the American Chemical Society, 2012, 134(8): 3804-3809. doi: 10.1021/ja210211zhttp://dx.doi.org/10.1021/ja210211z
BAE W K, CHAR K, HUR H, et al. Single-step synthesis of quantum dots with chemical composition gradients [J]. Chemistry of Materials, 2008, 20(2): 531-539. doi: 10.1021/cm070754dhttp://dx.doi.org/10.1021/cm070754d
PANDA S K, HICKEY S G, WAURISCH C, et al. Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications [J]. Journal of Materials Chemistry, 2011, 21(31): 11550-11555. doi: 10.1039/c1jm11375ehttp://dx.doi.org/10.1039/c1jm11375e
KIM T, KIM S W, KANG M, et al. Large-scale synthesis of InPZnS alloy quantum dots with dodecanethiol as a composition controller [J]. The Journal of Physical Chemistry Letters, 2012, 3(2): 214-218. doi: 10.1021/jz201605dhttp://dx.doi.org/10.1021/jz201605d
MEKIS I, TALAPIN D V, KORNOWSKI A, et al. One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and “greener” chemical approaches [J]. The Journal of Physical Chemistry B, 2003, 107(3): 7454-7462. doi: 10.1021/jp0278364http://dx.doi.org/10.1021/jp0278364
LIM J, BAE W K, LEE D, et al. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability [J]. Chemistry of Materials, 2011, 23(250): 4459-4463. doi: 10.1021/cm201550whttp://dx.doi.org/10.1021/cm201550w
FU Y, KIM D, JIANG W, et al. Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots [J]. RSC Advances, 2017, 7(65): 40866-40872. doi: 10.1039/c7ra06957jhttp://dx.doi.org/10.1039/c7ra06957j
YANG Y, QIN H Y, PENG X G. Intramolecular entropy and size-dependent solution properties of nanocrystal-ligands complexes [J]. Nano Letters, 2016, 16(4): 2127-2132. doi: 10.1021/acs.nanolett.6b00737http://dx.doi.org/10.1021/acs.nanolett.6b00737
YANG Y, QIN H Y, JIANG M W, et al. Entropic ligands for nanocrystals: from unexpected solution properties to outstanding processability [J]. Nano Letters, 2016, 16(4): 2133-2138. doi: 10.1021/acs.nanolett.6b00730http://dx.doi.org/10.1021/acs.nanolett.6b00730
KIM T, YOON C, SONG Y G, et al. Thermal stabilities of cadmium selenide and cadmium-free quantum dots in quantum dot-silicone nanocomposites [J]. Journal of Luminescence, 2016, 177: 54-58. doi: 10.1016/j.jlumin.2016.04.038http://dx.doi.org/10.1016/j.jlumin.2016.04.038
LIU F, ZHANG Y H, DING C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield [J]. ACS Nano, 2017, 11(10): 10373-10383. doi: 10.1021/acsnano.7b05442http://dx.doi.org/10.1021/acsnano.7b05442
WU L Z, ZHONG Q X, YANG D, et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand [J]. Langmuir, 2017, 33(44): 12689-12696. doi: 10.1021/acs.langmuir.7b02963http://dx.doi.org/10.1021/acs.langmuir.7b02963
XUAN T T, YANG X F, LOU S Q, et al. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes [J]. Nanoscale, 2017, 9(40): 15286-15290. doi: 10.1039/c7nr04179ahttp://dx.doi.org/10.1039/c7nr04179a
KIM H Y, YOON D E, JANG J, et al. Quantum dot/siloxane composite film exceptionally stable against oxidation under heat and moisture [J]. Journal of the American Chemical Society, 2016, 138(50): 16478-16485. doi: 10.1021/jacs.6b10681http://dx.doi.org/10.1021/jacs.6b10681
HUANG S Q, LI Z C, KONG L, et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene [J]. Journal of the American Chemical Society, 2016, 138(18): 5749-5752. doi: 10.1021/jacs.5b13101http://dx.doi.org/10.1021/jacs.5b13101
KIM S E, LEE J Y, SHIN M H, et al. Integration of prism sheet on quantum dot film with bridge patterns to enhance luminance of LED backlight unit [J]. IEEE Transactions on Electron Devices, 2017, 64(3): 1153-1160. doi: 10.1109/ted.2017.2651033http://dx.doi.org/10.1109/ted.2017.2651033
WOO H, LIM J, LEE Y, et al. Robust, processable, and bright quantum dot/organosilicate hybrid films with uniform QD distribution based on thiol-containing organosilicate ligands [J]. Journal of Materials Chemistry C, 2013, 1(10): 1983-1989. doi: 10.1039/c3tc00719ghttp://dx.doi.org/10.1039/c3tc00719g
HUANG Y G, HSIANG E L, DENG M Y, et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives [J]. Light: Science & Applications, 2020, 9: 105. doi: 10.1038/s41377-020-0341-9http://dx.doi.org/10.1038/s41377-020-0341-9
QU X Y, ZENG S S, WEI K, et al. Comparative study on the influence of quantum dot display and liquid crystal display on human visual function [C]//2019 18th International Conference on Optical Communications and Networks (ICOCN). Huangshan: IEEE, 2019. doi: 10.1109/icocn.2019.8934176http://dx.doi.org/10.1109/icocn.2019.8934176
季洪雷,程尚君,李鹏飞,等.量子点背光液晶显示技术的亥姆霍兹-科尔劳施效应[J].中国光学,2022,15(1):132-143. doi: 10.37188/CO.2021-0058http://dx.doi.org/10.37188/CO.2021-0058
JI H L, CHENG S J, LI P F, et al. Illustrating the helmholtz-kohlrausch effect of quantum dots enhanced LCD through a comparative study [J]. Chinese Optics, 2022, 15(1): 132-143. (in Chinese). doi: 10.37188/CO.2021-0058http://dx.doi.org/10.37188/CO.2021-0058
JI H L, XU H S, GUO J Q. A new generation of QD-diffusion plate technology for TV [J]. SID Symposium Digest of Technical Papers, 2020, 51(1): 1171-1173. doi: 10.1002/sdtp.14086http://dx.doi.org/10.1002/sdtp.14086
0
浏览量
223
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构