1.华南理工大学 半导体显示与光通信器件研发国家地方联合工程研究中心, 广东 广州 510641
2.佛山市国星光电股份有限公司 广东省半导体微显示企业重点实验室, 广东 佛山 528000
3.深圳TCL新技术有限公司 研发中心, 广东 深圳 518052
[ "李宗涛(1984—),男,广东普宁人,博士,教授,2013年于华南理工大学获得博士学位,主要从事特种加工、微电子封装、功能结构先进制造技术及其在微电子器件中高效应用相关领域的研究。E-mail:meztli@scut.edu.cn" ]
[ "李家声(1991—),男,广东广州人,博士,2020年于华南理工大学获得博士学位,主要从事LED半导体发光器件光功能结构方面的研究。E-mail:jiasli@ scut.edu.cn" ]
扫 描 看 全 文
李宗涛, 李杰鑫, 郑家龙, 等. 量子点LED显示研究进展:材料、封装涂层、图案化显示应用[J]. 液晶与显示, 2023,38(3):319-341.
LI Zong-tao, LI Jie-xin, ZHENG Jia-long, et al. Review of quantum dot-based LED display: materials, encapsulation coatings, patterned display applications[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(3):319-341.
李宗涛, 李杰鑫, 郑家龙, 等. 量子点LED显示研究进展:材料、封装涂层、图案化显示应用[J]. 液晶与显示, 2023,38(3):319-341. DOI: 10.37188/CJLCD.2022-0361.
LI Zong-tao, LI Jie-xin, ZHENG Jia-long, et al. Review of quantum dot-based LED display: materials, encapsulation coatings, patterned display applications[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(3):319-341. DOI: 10.37188/CJLCD.2022-0361.
量子点(Quantum Dot, QD)作为一种新型发光材料,具有发光光谱窄、激发光谱宽、量子产率高及可溶液制备等优点,其制成的发光二极管(Light-emitting diode, LED)器件通过色转换过程可实现红、蓝及绿波段较窄的发射半波峰(<20 nm),色域范围超过120% NTSC,被视为下一代最有潜力的显示技术之一。然而,量子点材料的发光不稳定性、低出光效率与全彩化技术难题严重限制了量子点材料在高性能显示设备方面的应用。如何解决这些难题,实现稳定高效的量子点全彩化新型显示仍需进一步探索。本文总结了国内外对量子点材料改性、量子点材料封装方法、量子点涂层出光增强策略以及量子点图案化显示应用4个方面的研究进展,为进一步提升量子点LED显示技术提供有价值的参考。
As a new nanomaterial, quantum dot (QD) has lots of advantages, including narrow emission linewidth, broad absorption spectra, high photoluminescence quantum yield (PLQY) and solution-processed characteristic and so on. Recently, integrating quantum dots (QDs) with LED chips to adjust the emission spectra is one of the most promising technique in display applications, successfully achieving a wide-color gamut over 120% NTSC by color conversion processes (the full width at half maximum of red, green, and blue spectra smaller than 20 nm). However, the application of quantum dots in high-performance display devices is severely limited by their poor luminous stability, low luminous efficiency, and full-color technology problems. How to solve these issues and achieve stable and efficient new quantum dot full-color display still needs further exploration. This paper reviews the research progress of quantum dot modification, quantum dot packaging method, quantum dot coating fluorescence enhancement strategy and quantum dot patterned display application at home and abroad, analyzes the progress of quantum dot LED devices from the aspects of packaging coating, fluorescence enhancement strategy and patterned quantum dot manufacturing method, and provides valuable information for the potential of quantum dot LED based display technology in the future.
量子点LED显示技术图案化
quantum dotsLEDdisplay technologypatterning
BUTKUS J, VASHISHTHA P, CHEN K, et al. The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals [J]. Chemistry of Materials, 2017, 29(8): 3644-3652. doi: 10.1021/acs.chemmater.7b00478http://dx.doi.org/10.1021/acs.chemmater.7b00478
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, Xhttp://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41147048&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41147046&type=3.725333212.28600001Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Letters, 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
GREYTAK A B, ALLEN P M, LIU W H, et al. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions [J]. Chemical Science, 2012, 3(6): 2028-2034. doi: 10.1039/c2sc00561ahttp://dx.doi.org/10.1039/c2sc00561a
LIU P, LOU Y J, DING S H, et al. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications [J]. Advanced Functional Materials, 2021, 31(11): 2008453. doi: 10.1002/adfm.202008453http://dx.doi.org/10.1002/adfm.202008453
WEN Z L, ZHOU Z M, LIU H C, et al. Color revolution: toward ultra-wide color gamut displays [J]. Journal of Physics D: Applied Physics, 2021, 54(21): 213002. doi: 10.1088/1361-6463/abe43dhttp://dx.doi.org/10.1088/1361-6463/abe43d
DÍAZ-GONZÁLEZ M, DE LA ESCOSURA-MUN˜IZ A, FERNANDEZ-ARGÜELLES M T, et al. Quantum dot bioconjugates for diagnostic applications [J]. Topics in Current Chemistry, 2020, 378(2): 35. doi: 10.1007/s41061-020-0296-6http://dx.doi.org/10.1007/s41061-020-0296-6
HAN H V, LIN C C, TSAI Y L, et al. A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization [J]. Scientific Reports, 2014, 4(1): 5734. doi: 10.1038/srep05734http://dx.doi.org/10.1038/srep05734
MEI S L, LIU X Y, ZHANG W L, et al. High-bandwidth white-light system combining a Micro-LED with perovskite quantum dots for visible light communication [J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5641-5648. doi: 10.1021/acsami.7b17810http://dx.doi.org/10.1021/acsami.7b17810
MING N, TAO S N, YANG W Q, et al. Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber [J]. Optics Express, 2018, 26(7): 9017-9026. doi: 10.1364/oe.26.009017http://dx.doi.org/10.1364/oe.26.009017
张洋,陶涛,刘斌.Micro-LED:下一代VR/AR技术候选者[J].微纳电子与智能制造,2021,3(3):23-42.
ZHANG Y, TAO T, LIU B. Micro-LED: a promising candidate for the next generation VR/AR technology [J]. Micro/Nano Electronics and Intelligent Manufacturing, 2021, 3(3): 23-42. (in Chinese)
王昊丰,李梓文,郑传涛.基于量子点白光LED的可见光通信系统[J].吉林大学学报(信息科学版),2019,37(2):113-118. doi: 10.3969/j.issn.1671-5896.2019.02.001http://dx.doi.org/10.3969/j.issn.1671-5896.2019.02.001
WANG H F, LI Z W, ZHENG C T. Visible light communication system based on quantum dot white LED [J]. Journal of Jilin University (Information Science Edition), 2019, 37(2): 113-118. (in Chinese). doi: 10.3969/j.issn.1671-5896.2019.02.001http://dx.doi.org/10.3969/j.issn.1671-5896.2019.02.001
WEI F, LI S, LU T, et al. Hybrid full color micro-LED displays with quantum dots [J]. SID Symposium Digest of Technical Papers, 2018, 49(S1): 697-699. doi: 10.1002/sdtp.12818http://dx.doi.org/10.1002/sdtp.12818
KANG J H, HAN J. Enabling technology for MicroLED display based on quantum dot color converter [J]. SID Symposium Digest of Technical Papers, 2019, 50(1): 914-916. doi: 10.1002/sdtp.13073http://dx.doi.org/10.1002/sdtp.13073
EFROS A L, BRUS L E. Nanocrystal quantum dots: from discovery to modern development [J]. ACS Nano, 2021, 15(4): 6192-6210. doi: 10.1021/acsnano.1c01399http://dx.doi.org/10.1021/acsnano.1c01399
YANG J, CHOI M K, YANG U J, et al. Toward full-color electroluminescent quantum dot displays [J]. Nano Letters, 2021, 21(1): 26-33. doi: 10.1021/acs.nanolett.0c03939http://dx.doi.org/10.1021/acs.nanolett.0c03939
SHU Y F, LIN X, QIN H Y, et al. Quantum dots for display applications [J]. Angewandte Chemie, 2020, 132(50): 22496-22507. doi: 10.1002/ange.202004857http://dx.doi.org/10.1002/ange.202004857
DE ARQUER F P G, TALAPIN D V, KLIMOV V I, et al. Semiconductor quantum dots: technological progress and future challenges [J]. Science, 2021, 373(6555): eaaz8541. doi: 10.1126/science.aaz8541http://dx.doi.org/10.1126/science.aaz8541
朱永明,谢斌,罗小兵.量子点转化LED封装的进展与展望[J].科学通报,2017,62(7):659-673. doi: 10.1360/N972016-00158http://dx.doi.org/10.1360/N972016-00158
ZHU Y M, XIE B, LUO X B. Progress and expectation of quantum dots converted light emitting diode package [J]. Chinese Science Bulletin, 2017, 62(7): 659-673. (in Chinese). doi: 10.1360/N972016-00158http://dx.doi.org/10.1360/N972016-00158
赵寅生,向卫东,钟家松,等.纳米量子点材料在LED中的研究进展[J].材料导报,2012,25(5):28-31. doi: 10.3969/j.issn.1005-023X.2012.05.007http://dx.doi.org/10.3969/j.issn.1005-023X.2012.05.007
ZHAO Y S, XIANG W D, ZHONG J S, et al. Progress in study on quantum dot light emitting diode [J]. Materials Review, 2012, 25(5): 28-31. (in Chinese). doi: 10.3969/j.issn.1005-023X.2012.05.007http://dx.doi.org/10.3969/j.issn.1005-023X.2012.05.007
毕克,林晓珑,侯景富,等.基于量子点荧光粉白光LED的发光特性和稳定性研究[J].光学与光电技术,2013,11(6):76-78,96. doi: 10.3969/j.issn.1672-3392.2013.06.017http://dx.doi.org/10.3969/j.issn.1672-3392.2013.06.017
BI K, LIN X L, HOU J F, et al. Emission property and stability of phosphors white LEDs based on quantum dots [J]. Optics & Optoelectronic Technology, 2013, 11(6): 76-78, 96. (in Chinese). doi: 10.3969/j.issn.1672-3392.2013.06.017http://dx.doi.org/10.3969/j.issn.1672-3392.2013.06.017
何思宇,刘远海,蒋福春,等.氧化物薄膜抑制量子点的光衰性能[J].照明工程学报,2020,31(1):36-39,52. doi: 10.3969/j.issn.1004-440X.2020.01.007http://dx.doi.org/10.3969/j.issn.1004-440X.2020.01.007
HE S Y, LIU Y H, JIANG F C, et al. The optical attenuation of quantum dots inhibited by oxide films [J]. China Illuminating Engineering Journal, 2020, 31(1): 36-39, 52. (in Chinese). doi: 10.3969/j.issn.1004-440X.2020.01.007http://dx.doi.org/10.3969/j.issn.1004-440X.2020.01.007
BOLES M A, LING D S, HYEON T, et al. The surface science of nanocrystals [J]. Nature Materials, 2016, 15(2): 141-153. doi: 10.1038/nmat4526http://dx.doi.org/10.1038/nmat4526
HAN T, YUAN Y, LIANG X, et al. Colloidal stable quantum dots modified by dual functional group polymers for inkjet printing [J]. Journal of Materials Chemistry C, 2017, 5(19): 4629-4635. doi: 10.1039/c7tc00452dhttp://dx.doi.org/10.1039/c7tc00452d
FANG F, LIU M J, CHEN W, et al. Atomic layer deposition assisted encapsulation of quantum dot luminescent microspheres toward display applications [J]. Advanced Optical Materials, 2020, 8(12): 1902118. doi: 10.1002/adom.201902118http://dx.doi.org/10.1002/adom.201902118
SHEN J H, WANG Y, ZHU Y H, et al. A polymer-coated template-confinement CsPbBr3 perovskite quantum dot composite [J]. Nanoscale, 2021, 13(13): 6586-6591. doi: 10.1039/d1nr00201ehttp://dx.doi.org/10.1039/d1nr00201e
ZHANG F, ZHONG H Z, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3(Xhttp://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41147053&type=http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=41147050&type=3.725333212.28600001Br, I, Cl) quantum dots: potential alternatives for display technology [J]. ACS Nano, 2015, 9(4): 4533-4542. doi: 10.1021/acsnano.5b01154http://dx.doi.org/10.1021/acsnano.5b01154
WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display [J]. Angewandte Chemie International Edition, 2016, 55(28): 7924-7929. doi: 10.1002/anie.201603698http://dx.doi.org/10.1002/anie.201603698
ZHANG X J, WANG H C, TANG A C, et al. Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display [J]. Chemistry of Materials, 2016, 28(23): 8493-8497. doi: 10.1021/acs.chemmater.6b04107http://dx.doi.org/10.1021/acs.chemmater.6b04107
LI Z T, SONG C J, LI J S, et al. Highly efficient and water-stable lead halide perovskite quantum dots using superhydrophobic aerogel inorganic matrix for white light-emitting diodes [J]. Advanced Materials Technologies, 2020, 5(2): 1900941. doi: 10.1002/admt.201900941http://dx.doi.org/10.1002/admt.201900941
LI J S, TANG Y, LI Z T, et al. Largely enhancing luminous efficacy, color-conversion efficiency, and stability for quantum-dot white LEDs using the two-dimensional hexagonal pore structure of sba-15 mesoporous particles [J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18808-18816. doi: 10.1021/acsami.8b22298http://dx.doi.org/10.1021/acsami.8b22298
XIE Y Y, GENG C, GAO Y Q, et al. Synthesis of quantum dot-ZnS nanosheet inorganic assembly with low thermal fluorescent quenching for LED application [J]. Materials, 2017, 10(11): 1242. doi: 10.3390/ma10111242http://dx.doi.org/10.3390/ma10111242
OTTO T, MÜLLER M, MUNDRA P, et al. Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity [J]. Nano Letters, 2012, 12(10): 5348-5354. doi: 10.1021/nl3027444http://dx.doi.org/10.1021/nl3027444
ADAM M, WANG Z Y, DUBAVIK A, et al. Liquid-liquid diffusion-assisted crystallization: a fast and versatile approach toward high quality mixed quantum dot-salt crystals [J]. Advanced Functional Materials, 2015, 25(18): 2638-2645. doi: 10.1002/adfm.201500552http://dx.doi.org/10.1002/adfm.201500552
XU W, CAI Z X, LI F M, et al. Embedding lead halide perovskite quantum dots in carboxybenzene microcrystals improves stability [J]. Nano Research, 2017, 10(8): 2692-2698. doi: 10.1007/s12274-017-1471-0http://dx.doi.org/10.1007/s12274-017-1471-0
XUAN T T, YANG X F, LOU S Q, et al. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes [J]. Nanoscale, 2017, 9(40): 15286-15290. doi: 10.1039/c7nr04179ahttp://dx.doi.org/10.1039/c7nr04179a
艾哲,倪帅帅,张亚非.基于CuInS2/ZnS核壳结构量子点的高光效暖白光LED[J].发光学报,2015,36(11):1282-1288. doi: 10.3788/fgxb20153611.1282http://dx.doi.org/10.3788/fgxb20153611.1282
AI Z, NI S S, ZHANG Y F. Warm white LED with high luminous efficiency based on CuInS2/ZnS core/shell quantum dots [J]. Chinese Journal of Luminescence, 2015, 36(11): 1282-1288. (in Chinese). doi: 10.3788/fgxb20153611.1282http://dx.doi.org/10.3788/fgxb20153611.1282
叶海桥,曹璠,窦永江,等.基于In1-xGaxP梯度合金核无镉量子点的制备及LED应用[J].上海大学学报(自然科学版),2021,27(5):846-855.
YE H Q, CAO F, DOU Y J, et al. Synthesis of alloyed In1-xGaxP quantum dots and their application to LEDs [J]. Journal of Shanghai University (Natural Science Edition), 2021, 27(5): 846-855. (in Chinese)
胡炼,吴惠桢.基于量子点-CBP混合层的量子点LED的制备[J].发光学报,2015,36(10):1106-1112. doi: 10.3788/fgxb20153610.1106http://dx.doi.org/10.3788/fgxb20153610.1106
HU L, WU H Z. Preparation of quantum dot light-emitting diodes based on the quantum dots-CBP hybrid [J]. Chinese Journal of Luminescence, 2015, 36(10): 1106-1112. (in Chinese). doi: 10.3788/fgxb20153610.1106http://dx.doi.org/10.3788/fgxb20153610.1106
CHEN O, ZHAO J, CHAUHAN V P, et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking [J]. Nature Materials, 2013, 12(5): 445-451. doi: 10.1038/nmat3539http://dx.doi.org/10.1038/nmat3539
TSCHIRNER N, LANGE H, SCHLIWA A, et al. Interfacial alloying in CdSe/CdS heteronanocrystals: a Raman spectroscopy analysis [J]. Chemistry of Materials, 2012, 24(2): 311-318. doi: 10.1021/cm202947nhttp://dx.doi.org/10.1021/cm202947n
CHEN X B, LOU Y B, SAMIA A C, et al. Coherency strain effects on the optical response of core/shell heteronanostructures [J]. Nano Letters, 2003, 3(6): 799-803. doi: 10.1021/nl034243bhttp://dx.doi.org/10.1021/nl034243b
HAO J J, LIU H C, MIAO J, et al. A facile route to synthesize CdSe/ZnS thick-shell quantum dots with precisely controlled green emission properties: towards QDs based LED applications [J]. Scientific Reports, 2019, 9(1): 12048. doi: 10.1038/s41598-019-48469-7http://dx.doi.org/10.1038/s41598-019-48469-7
CAI J H, WANG C H, HU X P, et al. Water-driven photoluminescence reversibility in CsPbBr3/PDMS-PUa composite [J]. Nano Research, 2022, 15(7): 6466-6476. doi: 10.1007/s12274-022-4202-0http://dx.doi.org/10.1007/s12274-022-4202-0
ALTINTAS Y, GENC S, TALPUR M Y, et al. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications [J]. Nanotechnology, 2016, 27(29): 295604. doi: 10.1088/0957-4484/27/29/295604http://dx.doi.org/10.1088/0957-4484/27/29/295604
JIANG D H, TSAI Y H, VEERAMUTHU L, et al. Novel ultra-stable and highly luminescent white light-emitting diodes from perovskite quantum dots—Polymer nanofibers through biaxial electrospinning [J]. APL Materials, 2019, 7(11): 111105. doi: 10.1063/1.5124880http://dx.doi.org/10.1063/1.5124880
LI Y, LV Y, GUO Z Q, et al. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes [J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15888-15894. doi: 10.1021/acsami.8b02857http://dx.doi.org/10.1021/acsami.8b02857
ZHOU Q C, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights [J]. Advanced Materials, 2016, 28(41): 9163-9168. doi: 10.1002/adma.201602651http://dx.doi.org/10.1002/adma.201602651
LI F, HUANG S, LIU X Y, et al. Highly stable and spectrally tunable gamma phase RbxCs1-xPbI3 gradient-alloyed quantum dots in PMMA matrix through a sites engineering [J]. Advanced Functional Materials, 2021, 31(11): 2008211. doi: 10.1002/adfm.202008211http://dx.doi.org/10.1002/adfm.202008211
LI T Y, XU X, LIN C H, et al. Highly UV resistant inch-scale hybrid perovskite quantum dot papers [J]. Advanced Science, 2020, 7(17): 1902439. doi: 10.1002/advs.201902439http://dx.doi.org/10.1002/advs.201902439
AI B, LIU C, WANG J, et al. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses [J]. Journal of the American Ceramic Society, 2016, 99(9): 2875-2877. doi: 10.1111/jace.14400http://dx.doi.org/10.1111/jace.14400
DI X X, HU Z M, JIANG J T, et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs [J]. Chemical Communications, 2017, 53(80): 11068-11071. doi: 10.1039/c7cc06486ahttp://dx.doi.org/10.1039/c7cc06486a
LIN J D, LU Y X, LI X Y, et al. Perovskite quantum dots glasses based backlit displays [J]. ACS Energy Letters, 2021, 6(2): 519-528. doi: 10.1021/acsenergylett.0c02561http://dx.doi.org/10.1021/acsenergylett.0c02561
YANG C B, ZHUANG B, LIN J D, et al. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display [J]. Chemical Engineering Journal, 2020, 398: 125616. doi: 10.1016/j.cej.2020.125616http://dx.doi.org/10.1016/j.cej.2020.125616
CHENG Y Z, SHEN C Y, SHEN L L, et al. Tb3+, Eu3+ co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs [J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21434-21444. doi: 10.1021/acsami.8b05003http://dx.doi.org/10.1021/acsami.8b05003
YE Y, ZHANG W C, ZHAO Z Y, et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications [J]. Advanced Optical Materials, 2019, 7(9): 1801663. doi: 10.1002/adom.201801663http://dx.doi.org/10.1002/adom.201801663
WANG H C, LIN S Y, TANG A C, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display [J]. Angewandte Chemie International Edition, 2016, 55(28): 7924-7929. doi: 10.1002/anie.201603698http://dx.doi.org/10.1002/anie.201603698
KIM Y H, LEE H, KANG S M, et al. Two-step-enhanced stability of quantum dots via silica and siloxane encapsulation for the long-term operation of light-emitting diodes [J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22801-22808. doi: 10.1021/acsami.9b06987http://dx.doi.org/10.1021/acsami.9b06987
易琰.氮化硼对量子点光转化LED流明效率的影响[J].电子产品世界,2022,29(6):79-80,82. doi: 10.3969/j.issn.1005-5517.2022.6.dzcpsj202206024http://dx.doi.org/10.3969/j.issn.1005-5517.2022.6.dzcpsj202206024
YI Y. Influence of boron nitride on luminous efficiency of quantum-dot converted LEDs [J]. Electronic Engineering & Product World, 2022, 29(6): 79-80, 82. (in Chinese). doi: 10.3969/j.issn.1005-5517.2022.6.dzcpsj202206024http://dx.doi.org/10.3969/j.issn.1005-5517.2022.6.dzcpsj202206024
TANG Y, LI Z, LI Z T, et al. Enhancement of luminous efficiency and uniformity of CCT for quantum dot-converted LEDs by incorporating with ZnO nanoparticles [J]. IEEE Transactions on Electron Devices, 2018, 65(1): 158-164. doi: 10.1109/ted.2017.2771785http://dx.doi.org/10.1109/ted.2017.2771785
LI Z T, LI J X, LI J S, et al. Scattering effect on optical performance of quantum dot white light-emitting diodes incorporating SiO2 nanoparticles [J]. IEEE Journal of Quantum Electronics, 2020, 56(3): 1-9. doi: 10.1109/jqe.2020.2986018http://dx.doi.org/10.1109/jqe.2020.2986018
THEOBALD D, YU S D, GOMARD G, et al. Design of selective reflectors utilizing multiple scattering by core-shell nanoparticles for color conversion films [J]. ACS Photonics, 2020, 7(6): 1452-1460. doi: 10.1021/acsphotonics.0c00117http://dx.doi.org/10.1021/acsphotonics.0c00117
LEE H, KIM Y H, LIM Y W, et al. Flexible but mechanically robust hazy quantum dot/glass fiber reinforced film for efficiently luminescent surface light source [J]. Advanced Optical Materials, 2020, 8(10): 1902178. doi: 10.1002/adom.201902178http://dx.doi.org/10.1002/adom.201902178
YU S D, FRITZ B, JOHNSEN S, et al. Enhanced photoluminescence in quantum dots-porous polymer hybrid films fabricated by microcellular foaming [J]. Advanced Optical Materials, 2019, 7(12): 1900223. doi: 10.1002/adom.201900223http://dx.doi.org/10.1002/adom.201900223
KIM G Y, KIM S, CHOI J, et al. Order-of-magnitude, broadband-enhanced light emission from quantum dots assembled in multiscale phase-separated block copolymers [J]. Nano Letters, 2019, 19(10): 6827-6838. doi: 10.1021/acs.nanolett.9b01941http://dx.doi.org/10.1021/acs.nanolett.9b01941
KANG J H, LI B J, ZHAO T S, et al. RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots [J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30890-30895. doi: 10.1021/acsami.0c00839http://dx.doi.org/10.1021/acsami.0c00839
LIANG H Y, ZHAO H G, LI Z P, et al. Silver nanoparticle film induced photoluminescence enhancement of near-infrared emitting PbS and PbS/CdS core/shell quantum dots: observation of different enhancement mechanisms [J]. Nanoscale, 2016, 8(9): 4882-4887. doi: 10.1039/c5nr05906bhttp://dx.doi.org/10.1039/c5nr05906b
LU G Z, YANG Z X, ZHENG K, et al. Metal-enhanced fluorescence of interlaminar composite film with self-assembled quantum Dots/Au@ SiO2 microarchitecture [J]. Organic Electronics, 2020, 77: 105540. doi: 10.1016/j.orgel.2019.105540http://dx.doi.org/10.1016/j.orgel.2019.105540
PRAVEENA M, DUTTA R, BASU J K. Resonant enhancement of photoluminescence intensity and anisotropy of quantum dot monolayers with self-assembled gold nanorods [J]. Plasmonics, 2017, 12(6): 1911-1919. doi: 10.1007/s11468-016-0462-4http://dx.doi.org/10.1007/s11468-016-0462-4
YU S D, ZHUANG B S, CHEN J C, et al. Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes [J]. Optics Letters, 2017, 42(23): 4962-4965. doi: 10.1364/ol.42.004962http://dx.doi.org/10.1364/ol.42.004962
LEE J, MIN K, PARK Y, et al. Photonic crystal phosphors integrated on a blue LED chip for efficient white light generation [J]. Advanced Materials, 2018, 30(3): 1703506. doi: 10.1002/adma.201703506http://dx.doi.org/10.1002/adma.201703506
CHEN E G, LIN J Y, YANG T, et al. Asymmetric quantum-dot pixelation for color-converted white balance [J]. ACS Photonics, 2021, 8(7): 2158-2165. doi: 10.1021/acsphotonics.1c00596http://dx.doi.org/10.1021/acsphotonics.1c00596
HAN H V, LIN H Y, LIN C C, et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology [J]. Optics Express, 2015, 23(25): 32504-32515. doi: 10.1364/oe.23.032504http://dx.doi.org/10.1364/oe.23.032504
LIN H Y, SHER C W, HSIEH D H, et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold [J]. Photonics Research, 2017, 5(5): 411-416. doi: 10.1364/prj.5.000411http://dx.doi.org/10.1364/prj.5.000411
WANG S W, HONG K B, TSAI Y L, et al. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography [J]. Scientific Reports, 2017, 7: 42962. doi: 10.1038/srep42962http://dx.doi.org/10.1038/srep42962
CHEN S W H, SHEN C C, WU T Z, et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer [J]. Photonics Research, 2019, 7(4): 416-422. doi: 10.1364/prj.7.000416http://dx.doi.org/10.1364/prj.7.000416
KIM B H, ONSES M S, LIM J B, et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes [J]. Nano Letters, 2015, 15(2): 969-973. doi: 10.1021/nl503779ehttp://dx.doi.org/10.1021/nl503779e
LI H G, DUAN Y Q, SHAO Z L, et al. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film [J]. Advanced Materials Technologies, 2020, 5(10): 2000401. doi: 10.1002/admt.202000401http://dx.doi.org/10.1002/admt.202000401
KIM H M, RYU M, CHA J H J, et al. Ten micrometer pixel, quantum dots color conversion layer for high resolution and full color active matrix micro-LED display [J]. Journal of the Society for Information Display, 2019, 27(6): 347-353. doi: 10.1002/jsid.782http://dx.doi.org/10.1002/jsid.782
LI X H, KUNDALIYA D, TAN Z J, et al. Projection lithography patterned high-resolution quantum dots/thiol-ene photo-polymer pixels for color down conversion [J]. Optics Express, 2019, 27(21): 30864-30874. doi: 10.1364/oe.27.030864http://dx.doi.org/10.1364/oe.27.030864
PARK J S, KYHM J, KIM H H, et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display [J]. Nano Letters, 2016, 16(11): 6946-6953. doi: 10.1021/acs.nanolett.6b03007http://dx.doi.org/10.1021/acs.nanolett.6b03007
KANG H L, KANG J G, WON J K, et al. Spatial light patterning of full color quantum dot displays enabled by locally controlled surface tailoring [J]. Advanced Optical Materials, 2018, 6(9): 1701335. doi: 10.1002/adom.201701335http://dx.doi.org/10.1002/adom.201701335
ZHANG P P, YANG G L, LI F, et al. Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes [J]. Nature Communications, 2022, 13(1): 6713. doi: 10.1038/s41467-022-34453-9http://dx.doi.org/10.1038/s41467-022-34453-9
XIE W Q, GOMES R, AUBERT T, et al. Nanoscale and single-dot patterning of colloidal quantum dots [J]. Nano Letters, 2015, 15(11): 7481-7487. doi: 10.1021/acs.nanolett.5b03068http://dx.doi.org/10.1021/acs.nanolett.5b03068
PALAZON F, AKKERMAN Q A, PRATO M, et al. X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water [J]. ACS Nano, 2016, 10(1): 1224-1230. doi: 10.1021/acsnano.5b06536http://dx.doi.org/10.1021/acsnano.5b06536
XU B B, ZHANG Y L, ZHANG R, et al. Programmable assembly of CdTe quantum dots into microstructures by femtosecond laser direct writing [J]. Journal of Materials Chemistry C, 2013, 1(31): 4699-4704. doi: 10.1039/c3tc30666fhttp://dx.doi.org/10.1039/c3tc30666f
ZHAN W J, MENG L H, SHAO C D, et al. In situ patterning perovskite quantum dots by direct laser writing fabrication [J]. ACS Photonics, 2021, 8(3): 765-770. doi: 10.1021/acsphotonics.1c00118http://dx.doi.org/10.1021/acsphotonics.1c00118
CHEN J, WU Y, LI X M, et al. Simple and fast patterning process by laser direct writing for perovskite quantum dots [J]. Advanced Materials Technologies, 2017, 2(10): 1700132. doi: 10.1002/admt.201700132http://dx.doi.org/10.1002/admt.201700132
LEE S. Design principle of reactive components for dimethacrylate-terminated quantum dots: preserved photoluminescent quantum yield, excellent pattern uniformity, and suppression of aggregation in the matrix [J]. Macromolecular Chemistry and Physics, 2020, 221(5): 1900488. doi: 10.1002/macp.201900488http://dx.doi.org/10.1002/macp.201900488
KIM T H, CHO K S, LEE E K, et al. Full-colour quantum dot displays fabricated by transfer printing [J]. Nature Photonics, 2011, 5(3): 176-182. doi: 10.1038/nphoton.2011.12http://dx.doi.org/10.1038/nphoton.2011.12
CHOI M K, YANG J, KANG K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing [J]. Nature Communications, 2015, 6: 7149. doi: 10.1038/ncomms8149http://dx.doi.org/10.1038/ncomms8149
0
浏览量
264
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构