1.西安工业大学 兵器科学与技术学院, 陕西 西安 710021
2.西安工业大学 发展规划处, 陕西 西安 710021
3.西安工业大学 电子信息工程学院, 陕西 西安 710021
4.西安工业大学 光电工程学院, 陕西 西安 710021
[ "毋宁(1997—),女,陕西西安人,硕士研究生,2020年于陕西理工大学获得学士学位,主要从事计算机视觉、人体姿态估计算法方面的研究。E-mail:402640544@qq.com" ]
[ "王鹏(1978—),男,山东泰安人,博士,教授,2022年于西北工业大学获得博士学位,主要从事智能信息感知与模式识别、武器测试技术及嵌入式系统等方面的研究。E-mail:wp_xatu@163.com" ]
扫 描 看 全 文
毋宁, 王鹏, 李晓艳, 等. 基于自适应特征感知的轻量化人体姿态估计[J]. 液晶与显示, 2023,38(8):1107-1117.
WU Ning, WANG Peng, LI Xiao-yan, et al. Lightweight human pose estimation based on adaptive feature sensing[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1107-1117.
毋宁, 王鹏, 李晓艳, 等. 基于自适应特征感知的轻量化人体姿态估计[J]. 液晶与显示, 2023,38(8):1107-1117. DOI: 10.37188/CJLCD.2022-0351.
WU Ning, WANG Peng, LI Xiao-yan, et al. Lightweight human pose estimation based on adaptive feature sensing[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1107-1117. DOI: 10.37188/CJLCD.2022-0351.
针对现有人体姿态估计网络在追求高精度检测时,网络结构设计复杂、模型参数量较大、检测效率较低的问题,本文提出了一种基于自适应特征感知的轻量级人体姿态估计算法。首先利用轻量化Ghost模块重构人体姿态估计的特征提取网络,减少网络参数量;其次设计了一种轻量级自适应特征感知的注意力机制,在降低网络模型复杂度的同时加强通道间信息有效交流,有效改善关键点定位效果;最后采用Huber Loss损失函数优化模型训练,实现异常点的更优预测,增强模型鲁棒性。在COCO数据集上进行验证,实验结果表明,与基准RMPE算法相比,改进后模型的检测精度提升了约0.5%,参数量减少了56.0%,网络运算量降低了32.6%,模型体积压缩了约57.0%,模型检测速率提升约2.1倍。本文改进后的人体姿态估计模型在压缩模型体积的同时提高了检测效率,增强了模型鲁棒性。
For the problems of complex network structure design,large number of model parameters and low detection efficiency in the existing human pose estimation network pursues high-precision detection, this paper proposes a lightweight human pose estimation algorithm based on adaptive feature perception. Firstly, the lightweight Ghost module is used to reconstruct the feature extraction network of human pose estimation to reduce the computation amount of the network. Secondly, a lightweight adaptive feature sensing attention mechanism is designed to reduce the complexity of network model and enhance the effective communication between channels, which can improve the positioning effect of key points. Finally, Huber Loss(Exponential square loss function) is used to optimize the loss function training model to achieve better prediction of outliers and enhance the robustness of the model. Verified on the COCO dataset, the experimental results show that compared with the benchmark RMPE algorithm, the detection accuracy of the improved model is increased by about 0.5%, the number of parameters is reduced by 56.0%, the network calculation amount is reduced by 32.6%, the model volume is compressed by about 57.0%, and the model detection rate is increased by about 2.1 times. In this paper, the improved human pose estimation model improves the detection efficiency and enhances the robustness of the model while compressing the model volume.
人体姿态估计轻量化自适应特征感知Ghost模块Huber Loss
human pose estimationlightweightadaptive feature perceptionghost moduleHuber Loss
马双双,王佳,曹少中,等.基于深度学习的二维人体姿态估计算法综述[J].计算机系统应用,2022,31(10):36-43.
MA S S, WANG J, CAO S Z, et al. Overview on two-dimensional human pose estimation methods based on deep learning [J]. Computer Systems & Applications, 2022, 31(10): 36-43. (in Chinese)
曾文献,马月,李伟光.轻量化二维人体骨骼关键点检测算法综述[J].科学技术与工程,2022,22(16):6377-6392. doi: 10.3969/j.issn.1671-1815.2022.16.002http://dx.doi.org/10.3969/j.issn.1671-1815.2022.16.002
ZENG W X, MA Y, LI W G. A survey of lightweight two-dimensional human skeleton key point detection algorithms [J]. Science Technology and Engineering, 2022, 22(16): 6377-6392. (in Chinese). doi: 10.3969/j.issn.1671-1815.2022.16.002http://dx.doi.org/10.3969/j.issn.1671-1815.2022.16.002
陈仁文,袁婷婷,黄文斌,等.卷积神经网络在驾驶员姿态估计上的应用[J].光学 精密工程,2021,29(4):813-821. doi: 10.37188/OPE.20212904.0813http://dx.doi.org/10.37188/OPE.20212904.0813
CHEN R W, YUAN T T, HUANG W B, et al. Driver pose estimation using convolutional neural networks [J]. Optics and Precision Engineering, 2021, 29(4): 813-821. (in Chinese). doi: 10.37188/OPE.20212904.0813http://dx.doi.org/10.37188/OPE.20212904.0813
王洪雁,袁海.基于骨骼及表观特征融合的动作识别方法[J].通信学报,2022,43(1):138-148. doi: 10.11959/j.issn.1000-436x.2022020http://dx.doi.org/10.11959/j.issn.1000-436x.2022020
WANG H Y, YUAN H. Action recognition method based on fusion of skeleton and apparent features [J]. Journal on Communications, 2022, 43(1): 138-148. (in Chinese). doi: 10.11959/j.issn.1000-436x.2022020http://dx.doi.org/10.11959/j.issn.1000-436x.2022020
林依林,林珊玲,林志贤.基于级联特征和图卷积的三维手部姿态估计算法[J].液晶与显示,2022,37(6):736-745. doi: 10.37188/cjlcd.2021-0307http://dx.doi.org/10.37188/cjlcd.2021-0307
LIN Y L, LIN S L, LIN Z X. 3D hand pose estimation algorithm based on cascaded features and graph convolution [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(6): 736-745. (in Chinese). doi: 10.37188/cjlcd.2021-0307http://dx.doi.org/10.37188/cjlcd.2021-0307
李国友,李晨光,王维江,等.基于单样本学习的多特征人体姿态模型识别研究[J].光电工程,2021,48(2):31-40. doi: 10.12086/oee.2021.200099http://dx.doi.org/10.12086/oee.2021.200099
LI G Y, LI C G, WANG W J, et al. Research on multi-feature human pose model recognition based on one-shot learning [J]. Opto-Electronic Engineering, 2021, 48(2): 31-40. (in Chinese). doi: 10.12086/oee.2021.200099http://dx.doi.org/10.12086/oee.2021.200099
ZUO C, QIAN J M, FENG S J, et al. Deep learning in optical metrology: a review [J]. Light: Science & Applications, 2022, 11(1): 39. doi: 10.1038/s41377-022-00714-xhttp://dx.doi.org/10.1038/s41377-022-00714-x
LUO Y, ZHAO Y F, LI J X, et al. Computational imaging without a computer: seeing through random diffusers at the speed of light [J]. eLight, 2022, 2(1): 4. doi: 10.1186/s43593-022-00012-4http://dx.doi.org/10.1186/s43593-022-00012-4
SITU G H. Deep holography [J]. Light: Advanced Manufacturing, 2022, 3(2): 13. doi: 10.37188/lam.2022.013http://dx.doi.org/10.37188/lam.2022.013
胡凯,陈旭,朱俊,等.基于多尺度3D卷积神经网络的行为识别方法[J].重庆邮电大学学报(自然科学版),2021,33(6):970-976. doi: 10.3979/j.issn.1673-825X.201910240366http://dx.doi.org/10.3979/j.issn.1673-825X.201910240366
HU K, CHEN X, ZHU J, et al. Multiscale 3D convolutional neural network for action recognition [J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2021, 33(6): 970-976. (in Chinese). doi: 10.3979/j.issn.1673-825X.201910240366http://dx.doi.org/10.3979/j.issn.1673-825X.201910240366
KREISS S, BERTONI L, ALAHI A. PifPaf: composite fields for human pose estimation [C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 11969-11978. doi: 10.1109/cvpr.2019.01225http://dx.doi.org/10.1109/cvpr.2019.01225
CAO Z, HIDALGO G, SIMON T, et al. OpenPose: realtime multi-person 2D pose estimation using part affinity fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 172-186. doi: 10.1109/tpami.2019.2929257http://dx.doi.org/10.1109/tpami.2019.2929257
林林,王延杰,孙海超.基于改进热图损失函数的目标6D姿态估计算法[J].液晶与显示,2022,37(7):913-923. doi: 10.37188/cjlcd.2021-0317http://dx.doi.org/10.37188/cjlcd.2021-0317
LIN L, WANG Y J, SUN H C. Object 6D pose estimation algorithm based on improved heatmap loss function [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(7): 913-923. (in Chinese). doi: 10.37188/cjlcd.2021-0317http://dx.doi.org/10.37188/cjlcd.2021-0317
FANG H S, XIE S Q, TAI Y W, et al. RMPE: regional multi-person pose estimation [C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2353-2362. doi: 10.1109/iccv.2017.256http://dx.doi.org/10.1109/iccv.2017.256
CHEN Y L, WANG Z C, PENG Y X, et al. Cascaded pyramid network for multi-person pose estimation [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7103-7102. doi: 10.1109/cvpr.2018.00742http://dx.doi.org/10.1109/cvpr.2018.00742
SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation [C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5686-5696. doi: 10.1109/cvpr.2019.00584http://dx.doi.org/10.1109/cvpr.2019.00584
CHENG B W, XIAO B, WANG J D, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation [C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 5385-5394. doi: 10.1109/cvpr42600.2020.00543http://dx.doi.org/10.1109/cvpr42600.2020.00543
YU C Q, XIAO B, GAO C X, et al. Lite-HRNet: a lightweight high-resolution network [C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10435-10445. doi: 10.1109/cvpr46437.2021.01030http://dx.doi.org/10.1109/cvpr46437.2021.01030
BULAT A, KOSSAIFI J, TZIMIROPOULOS G, et al. Toward fast and accurate human pose estimation via soft-gated skip connections [C]//Proceedings of the 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition. Buenos Aires: IEEE, 2020: 8-15. doi: 10.1109/fg47880.2020.00014http://dx.doi.org/10.1109/fg47880.2020.00014
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations [C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577-1586. doi: 10.1109/cvpr42600.2020.00165http://dx.doi.org/10.1109/cvpr42600.2020.00165
SUN Q, ZHOU W X, FAN J Q. Adaptive Huber regression [J]. Journal of the American Statistical Association, 2020, 115(529): 254-265. doi: 10.1080/01621459.2018.1543124http://dx.doi.org/10.1080/01621459.2018.1543124
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539. doi: 10.1109/cvpr42600.2020.01155http://dx.doi.org/10.1109/cvpr42600.2020.01155
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. doi: 10.1109/cvpr.2018.00745http://dx.doi.org/10.1109/cvpr.2018.00745
XIAO B, WU H P, WEI Y C. Simple baselines for human pose estimation and tracking [C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 472-487. doi: 10.1007/978-3-030-01231-1_29http://dx.doi.org/10.1007/978-3-030-01231-1_29
0
浏览量
60
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构