1.无锡学院 物联网工程学院, 江苏 无锡 214105
2.长春工业大学 计算机科学与工程学院, 吉林 长春 130012
3.中国北方车辆研究所, 北京 100072
4.吉林农业大学 信息技术学院, 吉林 长春 130118
[ "张丽娟(1978—),女,吉林梅河口人,博士,教授,2015年于长春理工大学获得博士学位,主要从事计算机视觉及光学图像处理等方面的研究。E-mail:zhanglijuan@cwxu.edu.cn" ]
[ "姜雨彤(1987—),女,吉林长春人,博士,副研究员,2017年于北京理工大学获得博士学位,主要从事计算机视觉、图像处理等方面的研究。E-mail:jiangyutong201@163.com" ]
扫 描 看 全 文
张丽娟, 张紫薇, 姜雨彤, 等. 复杂环境下基于改进DeepSORT的行人实时稳定跟踪方法[J]. 液晶与显示, 2023,38(8):1128-1138.
ZHANG Li-juan, ZHANG Zi-wei, JIANG Yu-tong, et al. Stable and real-time pedestrian tracking method based on improved DeepSORT under complex background[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1128-1138.
张丽娟, 张紫薇, 姜雨彤, 等. 复杂环境下基于改进DeepSORT的行人实时稳定跟踪方法[J]. 液晶与显示, 2023,38(8):1128-1138. DOI: 10.37188/CJLCD.2022-0350.
ZHANG Li-juan, ZHANG Zi-wei, JIANG Yu-tong, et al. Stable and real-time pedestrian tracking method based on improved DeepSORT under complex background[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(8):1128-1138. DOI: 10.37188/CJLCD.2022-0350.
实时多目标跟踪算法取得了理想的跟踪性能,但大多数现有算法的跟踪速度较慢,且随着背景复杂度的增加,跟踪精度也随之降低。针对此问题,本文提出了基于在线数据关联的行人实时跟踪算法。首先,设计了核相关滤波和卡尔曼滤波双轨道预测机制,配合DeepSORT中的级联匹配形成了预测-跟踪-校准体系,使数据关联更加可靠。此外,在目标检测部分引入了注意力机制,通过强化目标对象的位置信息增强特征表示能力,从而提升跟踪的精度。该模型在MOT16数据集上的MOTA达到了66.5%、IDF1达到了64.2%、IDSW达到了641。与DeepSORT算法对比,MOTA和IDF1分别提升了13%和13.2%,IDSW下降了410。本文算法有助于解决行人实时跟踪时出现的目标误检、漏检等问题,在跟踪中对严重遮挡情况仍保持了较高的跟踪精度,在复杂环境下可以实现行人实时稳定跟踪。
The real-time multiple object tracking algorithms have achieved ideal tracking performance, but the tracking speed is slow,and tracking accuracy is also decreased with the increase of background complexity in most of the recent algorithms. In terms of these issues, a real-time multiple pedestrian tracking algorithm is proposed based on online data association. First of all, the dual prediction mechanism of kernelized correlation filter and Kalman filter is designed. This mechanism forms a prediction tracking calibration system with the cascade matching in DeepSORT, which makes the data correlation more reliable. In addition, the attention mechanism is introduced in the object detection part of tracking to enhance feature representation ability by strengthening position information of the object, so as to improve racking accuracy.The experiment is carried out on MOT16 dataset, the MOTA is up to 66.5%, IDF1 is up to 64.2, IDSW is 641. Compared with DeepSORT algorithm, MOTA and IDF1 increase 13% and 13.2% respectively, and IDSW decreases 410.Experimental results show that the proposed algorithm is helpful to solve the problem of object false detection, missing detection and other problems in multiple pedestrian real-time tracking. It still maintains high tracking accuracy for severe occlusion in tracking, which can achieve real-time and stable multiple pedestrian tracking in complex background.
多目标跟踪实时跟踪YOLOv5核相关滤波算法DeepSORT
multiple object trackingonline trackingYOLOv5kernelized correlation filtersDeepSORT
CIAPARRONE G, SÁNCHEZ F L S, TABIK S, et al. Deep learning in video multi-object tracking: a survey [J]. Neurocomputing, 2020, 381: 61-88. doi: 10.1016/j.neucom.2019.11.023http://dx.doi.org/10.1016/j.neucom.2019.11.023
LUO Y, ZHAO Y F, LI J X, et al. Computational imaging without a computer: seeing through random diffusers at the speed of light [J]. eLight, 2022, 2: 4. doi: 10.1186/s43593-022-00012-4http://dx.doi.org/10.1186/s43593-022-00012-4
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J/OL]. arXiv, 2016: 1506.011497. doi: 10.1109/tpami.2016.2577031http://dx.doi.org/10.1109/tpami.2016.2577031
REDMON J, FARHADI A. YOLOv3: an incremental improvement [J/OL]. arXiv, 2018:1804.02767. doi: 10.1109/cvpr.2017.690http://dx.doi.org/10.1109/cvpr.2017.690
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 21-37. doi: 10.1007/978-3-319-46448-0_2http://dx.doi.org/10.1007/978-3-319-46448-0_2
BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking [C]. 2016 IEEE International Conference on Image Processing (ICIP). Phoenix: IEEE, 2016: 3464-3468. doi: 10.1109/icip.2016.7533003http://dx.doi.org/10.1109/icip.2016.7533003
WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric [C]. 2017 IEEE International Conference on Image Processing (ICIP). Beijing: IEEE, 2017: 3645-3649. doi: 10.1109/icip.2017.8296962http://dx.doi.org/10.1109/icip.2017.8296962
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters [C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 2544-2550. doi: 10.1109/cvpr.2010.5539960http://dx.doi.org/10.1109/cvpr.2010.5539960
HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/tpami.2014.2345390http://dx.doi.org/10.1109/tpami.2014.2345390
李国友,张凤煦,纪执安. 自适应多滤波器的高效卷积算子目标跟踪算法[J]. 光电工程,2020,47(7):190510. doi: 10.12086/oee.2020.190510http://dx.doi.org/10.12086/oee.2020.190510
LI G Y, ZHANG F X, JI Z A. Adaptive multi-filter tracker based on efficient convolution operator [J]. Opto-Electronic Engineering, 2020, 47(7): 190510. (in Chinese). doi: 10.12086/oee.2020.190510http://dx.doi.org/10.12086/oee.2020.190510
ZUO C, QIAN J, FENG S J, et al. Deep learning in optical metrology: a review [J]. Light: Science & Applications, 2022, 11(1): 39. doi: 10.1038/s41377-022-00714-xhttp://dx.doi.org/10.1038/s41377-022-00714-x
SITU G H. Deep holography[J]. Light: Advanced Manufacturing, 2022, 3(2): 278-300. doi: 10.37188/lam.2022.013http://dx.doi.org/10.37188/lam.2022.013
BERGMANN P, MEINHARDT T, LEAL-TAIXÉ L. Tracking without bells and whistles [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 941-951. doi: 10.1109/iccv.2019.00103http://dx.doi.org/10.1109/iccv.2019.00103
贺愉婷,车进,吴金蔓. 基于YOLOv5和重识别的行人多目标跟踪方法[J]. 液晶与显示,2022,37(7):880-890. doi: 10.37188/CJLCD.2022-0025http://dx.doi.org/10.37188/CJLCD.2022-0025
HE Y T, CHE J, WU J M. Pedestrian multi-target tracking method based on YOLOv5 and person re-identification [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(7): 880-890. (in Chinese). doi: 10.37188/CJLCD.2022-0025http://dx.doi.org/10.37188/CJLCD.2022-0025
席一帆,何立明,吕悦. 基于改进Fairmot框架的多目标跟踪[J]. 液晶与显示,2022,37(6):777-785. doi: 10.37188/cjlcd.2021-0304http://dx.doi.org/10.37188/cjlcd.2021-0304
XI Y F, HE L M, LV Y. Multi-object tracking based on improved Fairmot framework [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(6): 777-785. (in Chinese). doi: 10.37188/cjlcd.2021-0304http://dx.doi.org/10.37188/cjlcd.2021-0304
何雪东,周盛宗. 快速尺度自适应核相关滤波目标跟踪算法[J]. 激光与光电子学进展,2018,55(12):121501. doi: 10.3788/lop55.121501http://dx.doi.org/10.3788/lop55.121501
HE X D, ZHOU S Z. Fast scale adaptive kernel correlation filtering algorithm for target tracking [J]. Laser & Optoelectronics Progress, 2018, 55(12): 121501. (in Chinese). doi: 10.3788/lop55.121501http://dx.doi.org/10.3788/lop55.121501
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C].2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 13708-13717. doi: 10.1109/cvpr46437.2021.01350http://dx.doi.org/10.1109/cvpr46437.2021.01350
SHAO S, ZHAO Z J, LI B X, et al. CrowdHuman: a benchmark for detecting human in a crowd [J/OL]. arXiv, 2018:1805.00123.
ZHENG L, SHEN L, TIAN L, et al. Person re-identification meets image search [J]. Computer Science, 2015: 1-1. doi: 10.1109/iccv.2015.133http://dx.doi.org/10.1109/iccv.2015.133
STONE R. CenterTrack: an IP overlay network for tracking DoS floods [C]//Proceedings of the 9th USENIX Security Symposium. Denver: USENIX Association, 2000.
XU Y H, ŜEP A, BAN Y T, et al. How to train your deep multi-object tracker [C].2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 6786-6795. doi: 10.1109/cvpr42600.2020.00682http://dx.doi.org/10.1109/cvpr42600.2020.00682
PANG B, LI Y Z, ZHANG Y F, et al. TubeTK: adopting tubes to track multi-object in a one-step training model [C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 6307-6317. doi: 10.1109/cvpr42600.2020.00634http://dx.doi.org/10.1109/cvpr42600.2020.00634
ZHAN Y F, WANG C Y, WANG X G, et al. A simple baseline for multi-object tracking [J/OL]. arXiv, 2020:2004.01888.
0
浏览量
60
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构