1.河北工业大学 应用物理系, 天津 300401
[ "郭瑞彩(1998—),女,山东聊城人,硕士研究生,2020年于泰山学院获得学士学位,主要从事光热响应液晶弹性体等方面的研究。E-mail:18253809687@163.com" ]
[ "林勇(1999—),男,福建福州人,硕士研究生,2022年于河北工业大学获得学士学位,主要从事光热响应液晶弹性体等方面的研究。E-mail:17302299428@163.com" ]
[ "孙玉宝(1975—),男,河北沧州人,博士,教授,2010年于河北工业大学获得博士学位,主要从事液晶器件物理和液晶的新型应用等方面的研究。E-mail:sun_yubao@163.com" ]
扫 描 看 全 文
郭瑞彩, 林勇, 高文慧, 等. 氧化石墨烯/液晶弹性体复合膜的性能研究[J]. 液晶与显示, 2023,38(2):149-159.
GUO Rui-cai, LIN Yong, GAO Wen-hui, et al. Properties of graphene oxide/liquid crystal elastomer composites[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(2):149-159.
郭瑞彩, 林勇, 高文慧, 等. 氧化石墨烯/液晶弹性体复合膜的性能研究[J]. 液晶与显示, 2023,38(2):149-159. DOI: 10.37188/CJLCD.2022-0333.
GUO Rui-cai, LIN Yong, GAO Wen-hui, et al. Properties of graphene oxide/liquid crystal elastomer composites[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(2):149-159. DOI: 10.37188/CJLCD.2022-0333.
近年来,氧化石墨烯/液晶弹性体复合膜凭借其稳定高效的光热性能,受到科学家的广泛关注。但目前研究者大多重点关注其光热响应行为及使用场景,并未系统研究外界刺激的强弱和复合膜自身的尺寸大小对其响应性能的影响。本文采用旋涂的方法在制备的具有固定取向的液晶薄膜上涂覆一层氧化石墨烯,制备了具有不同液晶分子取向的氧化石墨烯/液晶弹性复合膜,可以实现红外光和温度的双重刺激响应,并对其进行了响应性能和形变规律的表征和分析。实验结果表明,氧化石墨烯/液晶弹性体复合膜是一种红外-热响应型的复合膜,该复合膜由于裁剪方向的不同,会呈现2种不同的形变规律,以此为基础,研究了不同强度外场刺激下复合膜的响应特性,以及复合膜自身尺寸的不同对复合膜响应特性产生的影响。发现1型复合膜的响应性能主要受宽度影响,2型复合膜的响应性能主要受长度影响,为氧化石墨烯/液晶弹性体复合膜的应用提供了基础。使用该复合膜制备了仿生光热驱动器,证明了其在生物仿生领域的潜力。
In recent years, graphene oxide/liquid crystal elastomer composites have received a lot of attention from scientists due to their stable and efficient photothermal properties. However, most researchers have focused on their photothermal response behavior and usage scenario, and have not systematically investigated the effects of the strength of external stimuli and the size of the composites themselves on their response performance. In this paper, graphene oxide/liquid crystal elastic composites with different liquid crystal molecular orientations were prepared by spin-coating a layer of graphene oxide on the prepared liquid crystal film with a fixed orientation, which can achieve the dual stimulation response of infrared light and temperature, and the response performance and deformation law were characterized and analyzed. The experimental results show that the graphene oxide/liquid crystal elastomer composite is an infrared-thermal responsive composite, which shows 2 different deformation laws due to different shearing modes. Based on this, the response properties of the composite under different intensity external field stimulation and the effect of different dimensions of the composite itself on the response properties of the composite are investigated. It is found that the response properties of type 1 composites are mainly affected by the width, and the response properties of type 2 composites are mainly affected by the length, which provides a basis for the application of graphene oxide/liquid crystal elastomer composites. Biomimetic photothermal actuators were prepared by this composite, implying great potential in the field of biomimicry.
液晶弹性体氧化石墨烯复合膜可逆形变响应性能
liquid crystal elastomergraphene oxidereversible deformationresponse properties
YU Y L, IKEDA T. Soft actuators based on liquid-crystalline elastomers [J]. Angew. Chem. Int. Ed., 2006, 45(33): 5416-5418. doi: 10.1002/anie.200601760http://dx.doi.org/10.1002/anie.200601760
IKEDA T, MAMIYA J I, YU Y L. Photomechanics of liquid-crystalline elastomers and other polymers [J]. Angew. Chem. Int. Ed., 2007, 46(4): 506-528. doi: 10.1002/anie.200602372http://dx.doi.org/10.1002/anie.200602372
JIANG H R, LI C S, HUANG X Z. Actuators based on liquid crystalline elastomer materials [J]. Nanoscale, 2013, 5(12): 5225-5240. doi: 10.1039/c3nr00037khttp://dx.doi.org/10.1039/c3nr00037k
WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers [J]. Nat. Mater., 2015, 14(11): 1087-1098. doi: 10.1038/nmat4433http://dx.doi.org/10.1038/nmat4433
RUS D, TOLLEY M T. Design, fabrication and control of soft robots [J]. Nature, 2015, 521(7553): 467-475. doi: 10.1038/nature14543http://dx.doi.org/10.1038/nature14543
翟飞,封伟.4D打印液晶弹性体软体机器人及其热致运动行为[J].应用化学,2021,38(10):1389-1396. doi: 10.1016/j.matt.2021.08.014http://dx.doi.org/10.1016/j.matt.2021.08.014
ZHAI F, FENG W. 4D printed liquid crystal elastomer soft robot and its thermal derived motion behavior [J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1389-1396. (in Chinese). doi: 10.1016/j.matt.2021.08.014http://dx.doi.org/10.1016/j.matt.2021.08.014
邓登,朱光明,宋斐,等.液晶弹性体的研究进展[J].化学进展,2006,18(10):1352-1360. doi: 10.3321/j.issn:1005-281X.2006.10.013http://dx.doi.org/10.3321/j.issn:1005-281X.2006.10.013
DENG D, ZHU G M, SONG F, et al. Advances in liquid crystal elastomers [J]. Prog. Chem., 2006, 18(10): 1352-1360. (in Chinese). doi: 10.3321/j.issn:1005-281X.2006.10.013http://dx.doi.org/10.3321/j.issn:1005-281X.2006.10.013
NAGAMANI S A, NORIKANE Y, TAMAOKI N. Photoinduced hinge-like molecular motion: studies on xanthene-based cyclic azobenzene dimers [J]. J. Org. Chem., 2005, 70(23): 9304-9313. doi: 10.1021/jo0513616http://dx.doi.org/10.1021/jo0513616
LEHMANN W, SKUPIN H, TOLKSDORF C, et al. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers [J]. Nature, 2001, 410(6827): 447-450. doi: 10.1038/35068522http://dx.doi.org/10.1038/35068522
DE HAAN L T, VERJANS J M N, BROER D J, et al. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl [J]. J. Am. Chem. Soc., 2014, 136(30): 10585-10588. doi: 10.1021/ja505475xhttp://dx.doi.org/10.1021/ja505475x
WANG L, LI Q. Stimuli-directing self-organized 3D liquid-crystalline nanostructures: from materials design to photonic applications [J]. Adv. Funct. Mater., 2016, 26(1): 10-28. doi: 10.1002/adfm.201502071http://dx.doi.org/10.1002/adfm.201502071
BISOYI H K, URBAS A M, LI Q, et al. Soft materials driven by photothermal effect and their applications [J]. Adv. Opt. Mater., 2018, 6(15): 1800458. doi: 10.1002/adom.201800458http://dx.doi.org/10.1002/adom.201800458
WANG L, LI Q. Photochromism into nanosystems: towards lighting up the future nanoworld [J]. Chem. Soc. Rev., 2018, 47(3): 1044-1097. doi: 10.1039/c7cs00630fhttp://dx.doi.org/10.1039/c7cs00630f
WANG L, URBAS A M, LI Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids [J]. Adv. Mater, 2020, 32(41): 1801335. doi: 10.1002/adma.201801335http://dx.doi.org/10.1002/adma.201801335
ZENG H, WASYLCZYK P, WIERSMA D S, et al. Light robots: bridging the gap between microrobotics and photomechanics in soft materials [J]. Adv. Mater., 2018, 30(24): 1703554. doi: 10.1002/adma.201703554http://dx.doi.org/10.1002/adma.201703554
YU Y L, MAEDA T, MAMIYA J I, et al. Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores [J]. Angew. Chem. Int. Ed., 2007, 46(6): 881-883. doi: 10.1002/anie.200603053http://dx.doi.org/10.1002/anie.200603053
杨梦园,杨潇,封伟,等.近红外光响应液晶纳米智能材料[J].液晶与显示,2020,35(7):631-644. doi: 10.37188/YJYXS20203507.0631http://dx.doi.org/10.37188/YJYXS20203507.0631
YANG M Y, YANG X, FENG W, et al. Near-infrared light-responsive intelligent liquid crystal nanocomposites [J]. Chin. J. Liq. Cryst. Dis., 2020, 35(7): 631-644. (in Chinese). doi: 10.37188/YJYXS20203507.0631http://dx.doi.org/10.37188/YJYXS20203507.0631
YANG H, LIU J J, WANG Z F, et al. Near-infrared-responsive gold nanorod/liquid crystalline elastomer composites prepared by sequential thiol-click chemistry [J]. Chem. Commun., 2015, 51(60): 12126-12129. doi: 10.1039/c5cc02599khttp://dx.doi.org/10.1039/c5cc02599k
CHEN L L, XU C, LIU J, et al. Optical absorption property and photo-thermal conversion performance of graphene oxide/water nanofluids with excellent dispersion stability [J]. Sol. Energy, 2017, 148: 17-24. doi: 10.1016/j.solener.2017.03.073http://dx.doi.org/10.1016/j.solener.2017.03.073
MASTAI Y, POLARZ S, ANTONIETTI M. Silica-carbon nanocomposites—a new concept for the design of solar absorbers [J]. Adv. Funct. Mater., 2002, 12(3): 197-202. doi: 10.1002/1616-3028(200203)12:3<197::aid-adfm197>3.0.co;2-ahttp://dx.doi.org/10.1002/1616-3028(200203)12:3<197::aid-adfm197>3.0.co;2-a
WANG Y W, FU Y Y, PENG Q L, et al. Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging [J]. J. Mater. Chem. B, 2013, 1(42): 5762-5767. doi: 10.1039/c3tb20986ehttp://dx.doi.org/10.1039/c3tb20986e
GAO W, LEE H K, HOBLEY J. Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation [J]. Angew. Chem. Int. Ed., 2015, 54(13): 3993-3996. doi: 10.1002/anie.201412103http://dx.doi.org/10.1002/anie.201412103
孙阳阳,张鸿雁,周建华,等.石墨烯纳米复合材料光热效应研究进展[J].化工新型材料,2014,42(1):30-32.
SUN Y Y, ZHANG H Y, ZHOU J H, et al. Progress of graphene nanocomposites’ photothermal effect [J]. New Chem. Mater., 2014, 42(1): 30-32. (in Chinese)
LI X Q, XU W C, TANG M Y, et al. Graphene oxide film for efficient solar desalination under one sun with a confined 2D water path [J]. Sci. Found. China, 2017, 25(1): 38.
CAO R, CHEN Z, WU Y H, et al. Precisely controlled growth of poly(ethyl acrylate) chains on graphene oxide and the formation of layered structure with improved mechanical properties [J]. Compos. Part A: Appl. Sci. Manuf., 2017, 93: 100-106. doi: 10.1016/j.compositesa.2016.11.019http://dx.doi.org/10.1016/j.compositesa.2016.11.019
WANG W, XIANG C X, ZHU Q, et al. Multistimulus responsive actuator with GO and carbon nanotube/PDMS bilayer structure for flexible and smart devices [J]. ACS Appl. Mater. Interfaces, 2018, 10(32): 27215-27223. doi: 10.1021/acsami.8b08554http://dx.doi.org/10.1021/acsami.8b08554
YU L, CHENG Z X, DONG Z J, et al. Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites [J]. J. Mater. Chem. C, 2014, 2(4): 8501-8506. doi: 10.1039/c4tc01097chttp://dx.doi.org/10.1039/c4tc01097c
MEDHEKAR N V, RAMASUBRAMANIAM A, RUOFF R S, et al. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties [J]. ACS Nano, 2010, 4(4): 2300-2306. doi: 10.1021/nn901934uhttp://dx.doi.org/10.1021/nn901934u
0
浏览量
55
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构