1.汕头大学 理学院, 广东 汕头 515063
2.湖南大学 物理与微电子科学学院, 湖南 长沙 410082
[ "周昕怡(2000—),男,陕西渭南人,硕士研究生,2022年于西安工业大学获得学士学位,主要从事液晶光控取向器件及应用方面的研究。E-mail:22xyzhou1@stu.edu.cn" ]
[ "周雅琴(1993—),女,湖南汨罗人,博士,讲师,2021年于湖南大学获得博士学位,主要从事液晶结构化光场调控器件方面的研究。E-mail: yqzhou@stu.edu.cn" ]
扫 描 看 全 文
周昕怡, 袁伊德, 张士元, 等. 基于液晶器件的不同阶混合阶庞加莱球上任意矢量涡旋光束的随意产生与切换[J]. 液晶与显示, 2023,38(1):24-31.
ZHOU Xin-yi, YUAN Yi-de, ZHANG Shi-yuan, et al. Generation and switching of arbitrary vector vortex beams on two hybrid-order Poincaré spheres with different orders based on liquid crystal device[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):24-31.
周昕怡, 袁伊德, 张士元, 等. 基于液晶器件的不同阶混合阶庞加莱球上任意矢量涡旋光束的随意产生与切换[J]. 液晶与显示, 2023,38(1):24-31. DOI: 10.37188/CJLCD.2022-0319.
ZHOU Xin-yi, YUAN Yi-de, ZHANG Shi-yuan, et al. Generation and switching of arbitrary vector vortex beams on two hybrid-order Poincaré spheres with different orders based on liquid crystal device[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):24-31. DOI: 10.37188/CJLCD.2022-0319.
通常用混合阶庞加莱球的方法描述任意矢量涡旋光束,该方法可以使其偏振与相位演化的物理过程变得更加直观。目前,人们常用空间光调制器、超表面与螺旋相位板的组合、激光谐振腔等来产生矢量涡旋光束。然而,这些方法所产生的光束通常只限于特定的偏振态,且具有低损伤阈值、低转换效率和大结构尺寸等缺点,并且这些方法通常只能实现同一混合阶庞加莱球上的适量涡旋光束的产生与切换。本文提出了一种利用电控可调液晶q板和波片通过纯电控手段来实现两个不同阶混合阶庞加莱球上任意矢量涡旋光束的随意产生与切换。通过理论和实验对其结果进行验证,与预期仿真结果基本保持一致。此方法具有良好的电可控性、集成性好、转换效率高等优点,并且可以为结构化光束的应用提供基本的光学系统支持。
Hybrid-order Poincaré Sphere is always used to describe arbitrary vector vortex beams and it makes the physical process of their polarization and phase evolution more intuitive. The vector vortex beam can be generated by using spatial light modulator, laser resonator and the combination of metasurface and spiral phase plate. However, the vector vortex beams generated by these methods are usually limited to specific polarization states, and have disadvantages such as low damage threshold, low conversion efficiency, and large structure size. Moreover, these methods can only generate the vector vortex beam on a specific hyrid-order Poincaré sphere. In this paper, we present a method to generate arbitrary vector vortex beam on two hyrid-order Poincaré spheres of different orders using two electronically controlled adjustable liquid crystal q-plates and a wave plate. The results were verified by theory and experiment. The generated vector vortex beam is also verified, which is largely consistent with the predictions. This method has the advantages of good electrical controllability, good integration and high conversion efficiency. This scheme can provide basic optical system support for the application of structured beams.
混合阶庞加莱球矢量涡旋光束液晶结构化光取向器件
mixed-order Poincaré spherevector vortex beamliquid crystal photopatterned technology
ZHAN Q W. Cylindrical vector beams: from mathematical concepts to applications [J]. Adv. Opt. Photonics, 2009, 1(1): 1-57. doi: 10.1364/aop.1.000001http://dx.doi.org/10.1364/aop.1.000001
ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Phys. Rev. A, 1992, 45(11): 8185-8189. doi: 10.1103/physreva.45.8185http://dx.doi.org/10.1103/physreva.45.8185
IDROBO J C, PENNYCOOK S J. Vortex beams for atomic resolution dichroism [J]. J. Electron Microsc., 2011, 60(5): 295-300. doi: 10.1093/jmicro/dfr069http://dx.doi.org/10.1093/jmicro/dfr069
NG J, LIN Z F, CHAN C T. Theory of optical trapping by an optical vortex beam [J]. Phys. Rev. Lett., 2010, 104(10): 103601. doi: 10.1103/physrevlett.104.103601http://dx.doi.org/10.1103/physrevlett.104.103601
WEI B Y, CHEN P, GE S J, et al. Generation of self-healing and transverse accelerating optical vortices [J]. Appl. Phys. Lett., 2016, 109(12): 121105. doi: 10.1063/1.4963061http://dx.doi.org/10.1063/1.4963061
TANG M J, CHEN P, ZHANG W L, et al. Integrated and reconfigurable optical paths based on stacking optical functional films [J]. Opt. Express, 2016, 24(22): 25510-25514. doi: 10.1364/oe.24.025510http://dx.doi.org/10.1364/oe.24.025510
NAIDOO D, ROUX F S, DUDLEY A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser [J]. Nat. Photonics, 2016, 10(5): 327-332. doi: 10.1038/nphoton.2016.37http://dx.doi.org/10.1038/nphoton.2016.37
MILIONE G, SZTUL H I, NOLAN D A, et al. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light [J]. Phys. Rev. Lett., 2011, 107(5): 053601. doi: 10.1103/physrevlett.107.053601http://dx.doi.org/10.1103/physrevlett.107.053601
CHEN P, GE S J, DUAN W, et al. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding [J]. ACS Photonics, 2017, 4(6): 1333-1338. doi: 10.1021/acsphotonics.7b00263http://dx.doi.org/10.1021/acsphotonics.7b00263
XU R, CHEN P, TANG J, et al. Perfect higher-order Poincaré sphere beams from digitalized geometric phases [J]. Phys. Rev. Appl., 2018, 10(3): 034061. doi: 10.1103/physrevapplied.10.034061http://dx.doi.org/10.1103/physrevapplied.10.034061
MILIONE G, EVANS S, NOLAN D A, et al. Higher order Pancharatnam-Berry phase and the angular momentum of light [J]. Phys. Rev. Lett., 2012, 108(19): 190401. doi: 10.1103/physrevlett.108.190401http://dx.doi.org/10.1103/physrevlett.108.190401
YI X N, LIU Y C, LING X H, et al. Hybrid-order Poincaré sphere [J]. Phys. Rev. A, 2015, 91(2): 023801. doi: 10.1103/physreva.91.023801http://dx.doi.org/10.1103/physreva.91.023801
WANG R S, HE S S, CHEN S Z, et al. Electrically driven generation of arbitrary vector vortex beams on the hybrid-order Poincaré sphere [J]. Opt. Lett., 2018, 43(15): 3570-3573. doi: 10.1364/ol.43.003570http://dx.doi.org/10.1364/ol.43.003570
MILIONE G, NGUYEN T A, LEACH J, et al. Using the nonseparability of vector beams to encode information for optical communication [J]. Opt. Lett., 2015, 40(21): 4887-4890. doi: 10.1364/ol.40.004887http://dx.doi.org/10.1364/ol.40.004887
MILIONE G, LAVERY M P J, HUANG H, et al. 4×20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer [J]. Opt. Lett., 2015, 40(9): 1980-1983. doi: 10.1364/ol.40.001980http://dx.doi.org/10.1364/ol.40.001980
GALVEZ E J, KHADKA S, SCHUBERT W H, et al. Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light [J]. Appl. Opt., 2012, 51(15): 2925-2934. doi: 10.1364/ao.51.002925http://dx.doi.org/10.1364/ao.51.002925
VISWANATHAN N K, INAVALLI V V G K. Generation of optical vector beams using a two-mode fiber [J]. Opt. Lett., 2009, 34(8): 1189-1191. doi: 10.1364/ol.34.001189http://dx.doi.org/10.1364/ol.34.001189
YANG Z, KUANG D F, CHENG F. Vector vortex beam generation with dolphin-shaped cell meta-surface [J]. Opt. Express, 2017, 25(19): 22780-22788. doi: 10.1364/oe.25.022780http://dx.doi.org/10.1364/oe.25.022780
YUE F Y, WEN D D, XIN J T, et al. Vector vortex beam generation with a single plasmonic metasurface [J]. ACS Photonics, 2016, 3(9): 1558-1563. doi: 10.1021/acsphotonics.6b00392http://dx.doi.org/10.1021/acsphotonics.6b00392
CHENG F, KUANG D F, DONG L Q, et al. Tuning of nanofocused vector vortex beam of metallic granary-shaped nanotip with spin-dependent dielectric helical cone [J]. Opt. Express, 2017, 25(15): 17393-17401. doi: 10.1364/oe.25.017393http://dx.doi.org/10.1364/oe.25.017393
CHEN H, HAO J J, ZHANG B F, et al. Generation of vector beam with space-variant distribution of both polarization and phase [J]. Opt. Lett., 2011, 36(16): 3179-3181. doi: 10.1364/ol.36.003179http://dx.doi.org/10.1364/ol.36.003179
CHAN W L, CHEN H T, TAYLOR A J, et al. A spatial light modulator for terahertz beams [J]. Appl. Phys. Lett., 2009, 94(21): 213511. doi: 10.1063/1.3147221http://dx.doi.org/10.1063/1.3147221
HU L F, XUAN L, LIU Y J, et al. Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision [J]. Opt. Express, 2004, 12(26): 6403-6409. doi: 10.1364/opex.12.006403http://dx.doi.org/10.1364/opex.12.006403
GE S J, CHEN P, MA L L, et al. Optical array generator based on blue phase liquid crystal dammann grating [J]. Opt. Mater. Express, 2016, 6(4): 1087-1092. doi: 10.1364/ome.6.001087http://dx.doi.org/10.1364/ome.6.001087
CHEN P, GE S J, MA L L, et al. Generation of equal-energy orbital angular momentum beams via photopatterned liquid crystals [J]. Phys. Rev. Appl., 2016, 5(4): 044009. doi: 10.1103/physrevapplied.5.044009http://dx.doi.org/10.1103/physrevapplied.5.044009
ZHANG W, TANG J, CHEN P, et al. Evolution of orbital angular momentum in a soft quasi-periodic structure with topological defects [J]. Opt. Express, 2019, 27(15): 21667-21676. doi: 10.1364/oe.27.021667http://dx.doi.org/10.1364/oe.27.021667
MA L L, LI C Y, PAN J T, et al. Self-assembled liquid crystal architectures for soft matter photonics [J]. Light: Sci. Appl., 2022, 11(1): 270. doi: 10.1038/s41377-022-00930-5http://dx.doi.org/10.1038/s41377-022-00930-5
PARK J, WON K, KIM Y. Liquid crystal between two distributed Bragg reflectors enables multispectral small-pitch spatial light modulator [J]. Light: Sci. Appl., 2022, 11(1): 210. doi: 10.1038/s41377-022-00882-whttp://dx.doi.org/10.1038/s41377-022-00882-w
LIU Z X, LIU Y C, KE Y G, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere [J]. Photon. Res., 2017, 5(1): 15-21. doi: 10.1364/prj.5.000015http://dx.doi.org/10.1364/prj.5.000015
HOLLECZEK A, AIELLO A, GABRIEL C, et al. Classical and quantum properties of cylindrically polarized states of light [J]. Opt. Express, 2011, 19(10): 9714-9736. doi: 10.1364/oe.19.009714http://dx.doi.org/10.1364/oe.19.009714
YAO A M, PADGETT M J. Orbital angular momentum: origins, behavior and applications [J]. Adv. Opt. Photonics, 2011, 3(2): 161-204. doi: 10.1364/aop.3.000161http://dx.doi.org/10.1364/aop.3.000161
MA H T, HU H J, XIE W K, et al. Study on the generation of a vortex laser beam by using phase-only liquid crystal spatial light modulator [J]. Opt. Eng., 2013, 52(9): 091721. doi: 10.1117/1.oe.52.9.091721http://dx.doi.org/10.1117/1.oe.52.9.091721
OSTROVSKY A S, RICKENSTORFF-PARRAO C, ARRIZÓN V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator [J]. Opt. Lett., 2013, 38(4): 534-536. doi: 10.1364/ol.38.000534http://dx.doi.org/10.1364/ol.38.000534
WU H, HU W, HU H C, et al. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system [J]. Opt. Express, 2012, 20(15): 16684-16689. doi: 10.1364/oe.20.016684http://dx.doi.org/10.1364/oe.20.016684
DUAN W, CHEN P, GE S J, et al. Helicity-dependent forked vortex lens based on photo-patterned liquid crystals [J]. Opt. Express, 2017, 25(13): 14059-14064. doi: 10.1364/oe.25.014059http://dx.doi.org/10.1364/oe.25.014059
ZHANG Y C, GAO N, XIE C Q. Using circular Dammann gratings to produce impulse optic vortex rings [J]. Appl. Phys. Lett., 2012, 100(4): 041107. doi: 10.1063/1.3679111http://dx.doi.org/10.1063/1.3679111
KIM H, PARK J, CHO S W, et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens [J]. Nano Lett., 2010, 10(2): 529-536. doi: 10.1021/nl903380jhttp://dx.doi.org/10.1021/nl903380j
TAM A M W, FAN F, DU T, et al. Bifocal optical-vortex lens with sorting of the generated nonseparable spin-orbital angular-momentum states [J]. Phys. Rev. Appl., 2017, 7(3): 034010. doi: 10.1103/physrevapplied.7.034010http://dx.doi.org/10.1103/physrevapplied.7.034010
CHEN P, WEI B Y, JI W, et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings [J]. Photonics Res., 2015, 3(4): 133-139. doi: 10.1364/prj.3.000133http://dx.doi.org/10.1364/prj.3.000133
FAN F, DU T, SRIVASTAVA A K, et al. Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate [J]. Opt. Express, 2012, 20(21): 23036-23043. doi: 10.1364/oe.20.023036http://dx.doi.org/10.1364/oe.20.023036
LIN T G, ZHOU Y Q, YUAN Y D, et al. Transflective spin-orbital angular momentum conversion device by three-dimensional multilayer liquid crystalline materials [J]. Opt. Express, 2018, 26(22): 29244-29252. doi: 10.1364/oe.26.029244http://dx.doi.org/10.1364/oe.26.029244
何永强,唐德帅,元雄,等.基于DMD的静态场景仿真成像特性分析[J].液晶与显示,2014,29(5):812-817. doi: 10.3788/yjyxs20142905.0812http://dx.doi.org/10.3788/yjyxs20142905.0812
HE Y Q, TANG D S, YUAN X, et al. Analysis of frame rate matching of infrared scene simulation system based on DMD [J]. Chin. J. Liq. Cryst. Disp., 2014, 29(5): 812-817. (in Chinese). doi: 10.3788/yjyxs20142905.0812http://dx.doi.org/10.3788/yjyxs20142905.0812
0
浏览量
168
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构