1.华东理工大学 物理学院, 上海 200237
2.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
[ "汪思涵(2001—),男,上海人,华东理工大学学生,主要从事光电子学方面的研究。E-mail:19002392@ecust.edu.cn" ]
[ "王骁乾(1984—),男,上海人,博士,讲师,2014年于香港科技大学获得博士学位,主要从事液晶微纳结构及光子器件方面的研究。E-mail:xqwang@ecust.edu.cn" ]
扫 描 看 全 文
汪思涵, 王骁乾, 薛文彬, 等. 基于液晶调制光偏振的荧光量子点显示模式[J]. 液晶与显示, 2023,38(1):32-39.
WANG Si-han, WANG Xiao-qian, XUE Wen-bin, et al. Fluorescent quantum dot display mode based on light polarization modulation via liquid crystal[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):32-39.
汪思涵, 王骁乾, 薛文彬, 等. 基于液晶调制光偏振的荧光量子点显示模式[J]. 液晶与显示, 2023,38(1):32-39. DOI: 10.37188/CJLCD.2022-0306.
WANG Si-han, WANG Xiao-qian, XUE Wen-bin, et al. Fluorescent quantum dot display mode based on light polarization modulation via liquid crystal[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):32-39. DOI: 10.37188/CJLCD.2022-0306.
传统的显示器由于滤色器的存在,有较大的功耗且能量利用率不高。本文提出了一种利用液晶调制紫外光偏振态以实现对受到局域表面等离子体共振影响的荧光量子点光强调制的方法,所设想的显示设备由用于产生局域表面等离子体共振的金属纳米结构、附着于金属纳米结构电场热区的荧光量子点和基于液晶结构的光偏振调制模块组成。对单个像素的情况进行了理论模拟和原理分析,计算了若干金属纳米结构对不同偏振态的紫外光的响应。理论验证了特定金属纳米结构的表面等离子体光强放大效应,通过电子束刻蚀和半导体沉积等技术手段可在光强放大的电场热区植入荧光量子点,受到紫外光偏振态调制的金属表面等离子体产生可控的光强增强或减弱,进而激发或者抑制相应颜色的量子点发出不同颜色的光,使其可以用于显示。提出了一种新颖的显示模式,不同于传统显示,其具有较高的能量利用率和较大的色域,虽然其存在色彩对比度较低、分辨率不够高等问题,但提议确实为人们日常的信息显示提供了一种新的思路和一种潜在可能,相信随着技术的进步和设计结构的优化,这种光偏振态调制受表面等离子体激励的荧光量子点的方法可以在显示以及非显示领域获得应用。
Due to the existence of color filter, the traditional displays have large power consumption but relatively low efficiency. In this article, we propose a method to utilize the polarization of an ultraviolet light, which is modulated by liquid crystal, to influence the light intensity distribution of a designed nanostructure in order to tune the stimulated fluorescent light of the quantum dots deposited in the corner of the metallic nanostructure. The concept is fundamentally based on the polarization-influenced local surface plasmon resonance and the proposed device comprises of the metallic nanostructure, quantum dots and liquid-crystal-based light polarization modulator. We simulate the electric field distribution for a single pixel case, and calculate the light intensity distributions for several metallic nanostructures under different polarization states of light. Thus, we theoretically verify the light intensity enhancement via local surface plasmon resonance arising from the specific metallic nanostructure. Through the technologies of E-beam etching and semiconductor deposition, the quantum dots with different sizes for corresponding colors can be implanted in specific “hot” areas, i.e., the corner of the metallic nanostructure, whose stimulated emitting fluorescent light intensity can be controlled via light polarization modulation through liquid crystal module. Thus, we propose a novel display mode, which possesses relatively high efficiency and large color gamut. Although it currently encounters some unexpected issues such as relatively low contrast ratio and low resolution, our proposed device does provide a potential way for the information display in people’s daily life. We believe that with the development of the technology and the optimization of the device, the proposed device is promising in the field of display or beyond.
等离子体共振荧光量子点液晶光的偏振态光强增强
plasma resonancefluorescent quantum dotliquid crystalpolarization states of lightlight intensity enhancement
HUANG Y, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives [J]. Light: Science & Applications, 2020, 9: 105. doi: 10.1038/s41377-020-0341-9http://dx.doi.org/10.1038/s41377-020-0341-9
CHEN H W, LEE J H, LIN B Y, et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives [J]. Light: Science & Applications, 2018, 7: 17168. doi: 10.1038/lsa.2017.168http://dx.doi.org/10.1038/lsa.2017.168
CHEN Y, MUNECHIKA K, PLANTE I J L, et al. Excitation enhancement of CdSe quantum dots by single metal nanoparticles [J]. Applied Physics Letters, 2008, 93(5): 053106. doi: 10.1063/1.2956391http://dx.doi.org/10.1063/1.2956391
POMPA P P, MARTIRADONNA L, TORRE A D, et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control [J]. Nature Nanotechnology, 2006, 1(2): 126-130. doi: 10.1038/nnano.2006.93http://dx.doi.org/10.1038/nnano.2006.93
KIM T H, CHO K S, LEE E K, et al. Full-colour quantum dot displays fabricated by transfer printing [J]. Nature Photonics, 2011, 5(3): 176-182.
李继军,聂晓梦,甄威,等.显示技术比较及新进展[J].液晶与显示,2018,33(1):74-84. doi: 10.3788/YJYXS20183301.0074http://dx.doi.org/10.3788/YJYXS20183301.0074
LI J J, NIE X M, ZHEN W, et al. New developments and comparisons in display technology [J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(1): 74-84. (in Chinese). doi: 10.3788/YJYXS20183301.0074http://dx.doi.org/10.3788/YJYXS20183301.0074
GONZÁLEZ-DÍAZ J B, GARCÍA-MARTÍN A, GARCÍA-MARTÍN J M, et al. Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity [J]. Small, 2008, 4(2): 202-205.
DU G X, MORI T, SUZUKI M, et al. Evidence of localized surface Plasmon enhanced magneto-optical effect in nanodisk array [J]. Applied Physics Letters, 2010, 96(8): 081915. doi: 10.1063/1.3334726http://dx.doi.org/10.1063/1.3334726
BANG S Y, SUH Y H, FAN X B, et al. Technology progress on quantum dot light-emitting diodes for next-generation displays [J]. Nanoscale Horizons, 2021, 6: 68-77.
关小雅,王洪哲,申怀彬,等.面向显示应用的量子点发光器件研究进展[J].液晶与显示,2021,36(1):176-186. doi: 10.37188/CJLCD.2020-0263http://dx.doi.org/10.37188/CJLCD.2020-0263
GUAN X Y, WANG H Z, SHEN H B, et al. Research progress of quantum dot light-emitting devices for display application [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(1): 176-186. (in Chinese). doi: 10.37188/CJLCD.2020-0263http://dx.doi.org/10.37188/CJLCD.2020-0263
DAI X L, DENG Y Z, PENG X G, et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization [J]. Advanced Materials, 2017, 29: 1607022.
KIRA M, KOCH S W. Semiconductor Quantum Optics [M]. Cambridge: Cambridge University Press, 2011: 388-404. doi: 10.1017/cbo9781139016926http://dx.doi.org/10.1017/cbo9781139016926
HAUG H, KOCH S W. Quantum Theory of the Optical and Electronic Properties of Semiconductors [M]. 5th ed. Munich: World Scientific Publishing Company, 2009.
MURAVSKY A, MURAUSKI A, CHIGRINOV V, et al. Light printing of grayscale pixel images on optical rewritable electronic paper [J]. Japanese Journal of Applied Physics, 2008, 47(8R): 6347-6353.
余丽红,沈冬,郑致刚.基于SLM投影拼接技术的液晶光学元件制备[J].液晶与显示,2022,37(9):1132-1139. doi: 10.37188/CJLCD.2022-0153http://dx.doi.org/10.37188/CJLCD.2022-0153
YU L H, SHEN D, ZHENG Z G. Fabrication of liquid crystal optical elements based on SLM projection splicing technology [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(9): 1132-1139. (in Chinese). doi: 10.37188/CJLCD.2022-0153http://dx.doi.org/10.37188/CJLCD.2022-0153
杨艳灵,张弛,郭玉强,等.消色差偏振旋转器[J].液晶与显示,2019,34(11):1061-1066. doi: 10.3788/yjyxs20193412.1131http://dx.doi.org/10.3788/yjyxs20193412.1131
YANG Y L, ZHANG C, GUO Y Q, et al. Achromatic polarization rotator [J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(11): 1061-1066. (in Chinese). doi: 10.3788/yjyxs20193412.1131http://dx.doi.org/10.3788/yjyxs20193412.1131
ZHUANG Z, SUH S W, PATEL J S. Polarization controller using nematic liquid crystals [J]. Optics Letters, 1999, 24(10): 694-696.
FAN X Y, MA W Y, ZHANG Y M, et al. Broadband spatial polarization processing of light via a photopatterned dichroic medium [J]. Applied Physics Letters, 2022, 120(4): 041103. doi: 10.1063/5.0081050http://dx.doi.org/10.1063/5.0081050
CHEN P, JI W, WEI B Y, et al. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates [J]. Applied Physics Letters, 2015, 107(24): 241102. doi: 10.1063/1.4937592http://dx.doi.org/10.1063/1.4937592
0
浏览量
163
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构