1.英国曼彻斯特大学 自然科学学院 物理与天文系,曼彻斯特 M13 9PL
[ "沈源(1992—),男,上海金山人,博士后,2022年于曼彻斯特大学获得博士学位,主要从事液晶、活性软物质、细胞生物学等方向的研究。E-mail:yuanshen97@outlook.com" ]
扫 描 看 全 文
沈源. 电场驱动下向列相液晶中耗散型指向子的研究[J]. 液晶与显示, 2023,38(1):95-103.
SHEN Yuan. Electrically driven dissipative directrons in nematic liquid crystals[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):95-103.
沈源. 电场驱动下向列相液晶中耗散型指向子的研究[J]. 液晶与显示, 2023,38(1):95-103. DOI: 10.37188/CJLCD.2022-0295.
SHEN Yuan. Electrically driven dissipative directrons in nematic liquid crystals[J]. Chinese Journal of Liquid Crystals and Displays, 2023,38(1):95-103. DOI: 10.37188/CJLCD.2022-0295.
从海洋到天空,从物理到生物系统,孤子无处不在并且在各式各样的非线性系统中被观测到。液晶作为一种典型的非线性材料,除了被广泛应用于显示器领域,还经常被作为对孤子研究的理想材料。由于其在基础物理科学以及各种应用领域中的潜在价值,液晶孤子在近些年受到了越来越多的关注。本文介绍了近年来耗散型液晶孤子(指向子)最新的实验研究进展,重点介绍了其在非手性和手性向列相液晶中开展的指向子的实验研究进展。新型的耗散型液晶孤子(即指向子)具有复杂多样的非线性动态行为,将在光学和微流控领域产生潜在应用。
From the ocean to the sky, from physical to biological systems, solitons are ubiquitous and have been observed in different kinds of nonlinear systems. Liquid crystals, well known for their applications in electro-optics and displays, have been broadly used as a perfect platform for studying solitons. Solitons in liquid crystals have received increasing attention recently due to their great potentials in fundamental physical science and various applications. This review discusses the most recent advances in the experimental researches of directrons in achiral and chiral nematics, respectively. The novel dissipative soliton has received increasing attention recently due to its various fascinating nonlinear dynamic behaviors and its potential applications in optics and microfluidics.
向列相液晶胆甾相液晶孤子指向子
nematic liquid crystalscholesteric liquid crystalssolitonsdirectrons
BULLOUGH R K. Solitons [J]. Physics Bulletin, 1978, 29(2): 78-82. doi: 10.1088/0031-9112/29/2/029http://dx.doi.org/10.1088/0031-9112/29/2/029
RUSSELL J S. Report on waves [C]//Report of the Fourteenth Meeting of the British Association for the Advancement of Science. 1844: 311-390.
KORTEWEG D J, DE VRIES G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39(240): 422-443.
ZABUSKY N J, KRUSKAL M D. Interaction of “solitons” in a collisionless plasma and the recurrence of initial states [J]. Physical Review Letters, 1965, 15(6): 240-243. doi: 10.1103/physrevlett.15.240http://dx.doi.org/10.1103/physrevlett.15.240
SKYRME T H R. A unified field theory of mesons and baryons [J]. Nuclear Physics, 1962, 31: 556-569. doi: 10.1016/0029-5582(62)90775-7http://dx.doi.org/10.1016/0029-5582(62)90775-7
RAY M W, RUOKOKOSKI E, KANDEL S, et al. Observation of dirac monopoles in a synthetic magnetic field [J]. Nature, 2014, 505(7485): 657-660. doi: 10.1038/nature12954http://dx.doi.org/10.1038/nature12954
TSESSES S, OSTROVSKY E, COHEN K, et al. Optical skyrmion lattice in evanescent electromagnetic fields [J]. Science, 2018, 361(6406): 993-996. doi: 10.1126/science.aau0227http://dx.doi.org/10.1126/science.aau0227
HARADA K, MATSUDA T, BONEVICH J, et al. Real-time observation of vortex lattices in a superconductor by electron microscopy [J]. Nature, 1992, 360(6399): 51-53. doi: 10.1038/360051a0http://dx.doi.org/10.1038/360051a0
RÖSSLER U K, BOGDANOV A N, PFLEIDERER C. Spontaneous skyrmion ground states in magnetic metals [J]. Nature, 2006, 442(7104): 797-801. doi: 10.1038/nature05056http://dx.doi.org/10.1038/nature05056
LAM L. Solitons in liquid crystals: recent developments [J]. Chaos, Solitons & Fractals, 1995, 5(12): 2463-2473. doi: 10.1016/0960-0779(94)e0108-2http://dx.doi.org/10.1016/0960-0779(94)e0108-2
DE GENNES P G, PROST J. The Physics of Liquid Crystals [M]. 2nd ed. Oxford: Oxford University Press, 1993.
ZHANG X, XU Y Y, VALENZUELA C, et al. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence [J]. Light: Science & Applications, 2022, 11(1): 223. doi: 10.1038/s41377-022-00913-6http://dx.doi.org/10.1038/s41377-022-00913-6
SHEN Y, DIERKING I. Recent progresses on experimental investigations of topological and dissipative solitons in liquid crystals [J]. Crystals, 2022, 12(1): 94. doi: 10.3390/cryst12010094http://dx.doi.org/10.3390/cryst12010094
LAM L, PROST J. Solitons in Liquid Crystals [M]. New York: Springer, 1992. doi: 10.1007/978-1-4612-0917-1http://dx.doi.org/10.1007/978-1-4612-0917-1
LAVRENTOVICH O D. Design of nematic liquid crystals to control microscale dynamics [J]. Liquid Crystals Reviews, 2020, 8(2): 59-129. doi: 10.1080/21680396.2021.1919576http://dx.doi.org/10.1080/21680396.2021.1919576
SMALYUKH I I. Review: knots and other new topological effects in liquid crystals and colloids [J]. Reports on Progress in Physics, 2020, 83(10): 106601. doi: 10.1088/1361-6633/abaa39http://dx.doi.org/10.1088/1361-6633/abaa39
FUKUDA J I, NYCH A, OGNYSTA U, et al. Liquid crystalline half-skyrmions and their optical properties [J]. Annalen der Physik, 2022, 534(2): 2100336. doi: 10.1002/andp.202100336http://dx.doi.org/10.1002/andp.202100336
WU J S, SMALYUKH I I. Hopfions, heliknotons, skyrmions, torons and both abelian and nonabelian vortices in chiral liquid crystals [J]. Liquid Crystals Reviews, 2022. doi: 10.1080/21680396.2022.2040058http://dx.doi.org/10.1080/21680396.2022.2040058
BÖDEKER H U, RÖTTGER M C, LIEHR A W, et al. Noise-covered drift bifurcation of dissipative solitons in a planar gas-discharge system [J]. Physical Review E, 2003, 67(5): 056220. doi: 10.1103/physreve.67.056220http://dx.doi.org/10.1103/physreve.67.056220
SHEN Y, DIERKING I. Dynamics of electrically driven solitons in nematic and cholesteric liquid crystals [J]. Communications Physics, 2020, 3(1): 14. doi: 10.1038/s42005-020-0288-4http://dx.doi.org/10.1038/s42005-020-0288-4
SHEN Y, DIERKING I. Dynamic dissipative solitons in nematics with positive anisotropies [J]. Soft Matter, 2020, 16(22): 5325-5333. doi: 10.1039/d0sm00676ahttp://dx.doi.org/10.1039/d0sm00676a
SHEN Y, DIERKING I. Electrically driven formation and dynamics of swallow-tail solitons in smectic a liquid crystals [J]. Materials Advances, 2021, 2(14): 4752-4761.
SHEN Y, DIERKING I. Electrically tunable collective motion of dissipative solitons in chiral nematic films [J]. Nature Communications, 2022, 13(1): 2122. doi: 10.1038/s41467-022-29831-2http://dx.doi.org/10.1038/s41467-022-29831-2
MA L L, LI C Y, PAN J T, et al. Self-assembled liquid crystal architectures for soft matter photonics [J]. Light: Science & Applications, 2022, 11(1): 270. doi: 10.1038/s41377-022-00930-5http://dx.doi.org/10.1038/s41377-022-00930-5
LI B X, BORSHCH V, XIAO R L, et al. Electrically driven three-dimensional solitary waves as director bullets in nematic liquid crystals [J]. Nature Communications, 2018, 9(1): 2912. doi: 10.1038/s41467-018-05101-yhttp://dx.doi.org/10.1038/s41467-018-05101-y
BRAND H R, FRADIN C, FINN P L, et al. Electroconvection in nematic liquid crystals: comparison between experimental results and the hydrodynamic model [J]. Physics Letters A, 1997, 235(5): 508-514. doi: 10.1016/s0375-9601(97)00680-4http://dx.doi.org/10.1016/s0375-9601(97)00680-4
CALDERER M C, EARLS A. Three-dimensional solitons in nematic liquid crystals: linear analysis[J]. arXiv, 2019: 1910.05959.
LI B X, XIAO R L, PALADUGU S, et al. Three-dimensional solitary waves with electrically tunable direction of propagation in nematics [J]. Nature Communications, 2019, 10(1): 3749. doi: 10.1038/s41467-019-11768-8http://dx.doi.org/10.1038/s41467-019-11768-8
KREKHOV A, PESCH W, ÉBER N, et al. Nonstandard electroconvection and flexoelectricity in nematic liquid crystals [J]. Physical Review E, 2008, 77(2): 021705. doi: 10.1103/physreve.77.021705http://dx.doi.org/10.1103/physreve.77.021705
AYA S, ARAOKA F. Kinetics of motile solitons in nematic liquid crystals [J]. Nature Communications, 2020, 11(1): 3248. doi: 10.1038/s41467-020-16864-8http://dx.doi.org/10.1038/s41467-020-16864-8
IBRAGIMOV T D. Influence of fullerenes C60 and single-walled carbon nanotubes on the carr-helfrich effect in nematic liquid crystal [J]. Optik, 2021, 237: 166768. doi: 10.1016/j.ijleo.2021.166768http://dx.doi.org/10.1016/j.ijleo.2021.166768
BODENSCHATZ E, ZIMMERMANN W, KRAMER L. On electrically driven pattern-forming instabilities in planar nematics [J]. Journal de Physique, 1988, 49(11): 1875-1899. doi: 10.1051/jphys:0198800490110187500http://dx.doi.org/10.1051/jphys:0198800490110187500
ZHANG H P, BE’ER A, FLORIN E L, et al. Collective motion and density fluctuations in bacterial colonies [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13626-13630. doi: 10.1073/pnas.1001651107http://dx.doi.org/10.1073/pnas.1001651107
YAN J, HAN M, ZHANG J, et al. Reconfiguring active particles by electrostatic imbalance [J]. Nature Materials, 2016, 15(10): 1095-1099. doi: 10.1038/nmat4696http://dx.doi.org/10.1038/nmat4696
GASSER U, EISENMANN C, MARET G, et al. Melting of crystals in two dimensions [J]. ChemPhysChem, 2010, 11(5): 963-970. doi: 10.1002/cphc.200900755http://dx.doi.org/10.1002/cphc.200900755
SHEN Y, DIERKING I. Annealing and melting of active two-dimensional soliton lattices in chiral nematic films [J]. Soft Matter, 2022, 18(37): 7045-7050. doi: 10.1039/d2sm00815ghttp://dx.doi.org/10.1039/d2sm00815g
PIKIN S A. On the structural instability of a nematic in an alternating electric field and its connection with convection and the flexoelectric effect [J]. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 2019, 13(6): 1078-1082. doi: 10.1134/s1027451019060181http://dx.doi.org/10.1134/s1027451019060181
PIKIN S A. Dynamic charged structures in nematics with negative anisotropy of electroconductivity [J]. Journal of Experimental and Theoretical Physics, 2021, 132(4): 637-640. doi: 10.1134/s1063776121040257http://dx.doi.org/10.1134/s1063776121040257
NAKAGAWA M, AKAHANE T. A new type of electrohydrodynamic instability in nematic liquid crystals with positive dielectric anisotropy. I. The existence of the charge injection and the diffusion current [J]. Journal of the Physical Society of Japan, 1983, 52(11): 3773-3781. doi: 10.1143/jpsj.52.3773http://dx.doi.org/10.1143/jpsj.52.3773
NAKAGAWA M, AKAHANE T. A new type of electrohydrodynamic instability in nematic liquid crystals with positive dielectric anisotropy. II. Theoretical treatment [J]. Journal of the Physical Society of Japan, 1983, 52(11): 3782-3789. doi: 10.1143/jpsj.52.3782http://dx.doi.org/10.1143/jpsj.52.3782
DAS S, ROH S, ATZIN N, et al. Programming solitons in liquid crystals using surface chemistry [J]. Langmuir, 2022, 38(11): 3575-3584. doi: 10.1021/acs.langmuir.2c00231http://dx.doi.org/10.1021/acs.langmuir.2c00231
0
浏览量
143
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构