1.合肥京东方显示技术有限公司, 安徽 合肥 230012
[ "张 俊(1990—),男,湖北黄冈人,硕士,高级工程师,2016年于合肥工业大学获得硕士学位,主要从事液晶显示面板缺陷检测工作。E-mail:zjunhf@boe.com.cn" ]
[ "朱忠发(1982—),男,江苏泰州人,学士,工程师,2002年于扬州大学获得学士学位,主要从事液晶显示面板缺陷检测工作。E-mail: zhuzhongfa@ boe.com.cn" ]
扫 描 看 全 文
张俊, 朱忠发, 周进, 等. 大尺寸液晶面板获取精准缺陷坐标的研究与应用[J]. 液晶与显示, 2022,37(12):1561-1571.
ZHANG Jun, ZHU Zhong-fa, ZHOU Jin, et al. Research and application of detecting accurate defect coordinates for large size LCD panel[J]. Chinese Journal of Liquid Crystals and Displays, 2022,37(12):1561-1571.
张俊, 朱忠发, 周进, 等. 大尺寸液晶面板获取精准缺陷坐标的研究与应用[J]. 液晶与显示, 2022,37(12):1561-1571. DOI: 10.37188/CJLCD.2022-0259.
ZHANG Jun, ZHU Zhong-fa, ZHOU Jin, et al. Research and application of detecting accurate defect coordinates for large size LCD panel[J]. Chinese Journal of Liquid Crystals and Displays, 2022,37(12):1561-1571. DOI: 10.37188/CJLCD.2022-0259.
为了解决传统小尺寸液晶面板缺陷寻址方法应用在高分辨率、大尺寸液晶面板上存在的效率低、精度差等问题,建立了全自动缺陷精确寻址系统,并对该系统硬件与软件的架构及实施方式、缺陷的定址逻辑进行研究。首先,在点灯检测设备的基础上增加可移动光学相机机构和相应的软件架构,构建成寻址中控系统;然后,通过相机拍摄液晶面板自身显示的空心十字光标与缺陷重合前后的图片,采用对比的方法精确定位缺陷;最后,通过液晶面板驱动装置输出缺陷坐标。对5种缺陷进行测试,结果表明,该系统稳定易用,具有全自动、识别速度快和100%精确寻址等优点。该系统应用于H公司缺陷坐标寻址工序后,缺陷坐标准确性提升30%以上,缺陷维修收益显著提升,在大尺寸液晶面板缺陷维修坐标寻址领域具有重大应用价值。
In order to solve the problems of low efficiency and poor accuracy of traditional small size LCD panel defect addressing method applied to high resolution and large size LCD panel, a full automatic accurate defect addressing system was established, and its hardware and software architecture, implementation and defect addressing logic were studied. Firstly, an addressing central control system was constructed by adding a movable optical camera mechanism and corresponding software architecture on the basis of detection equipment. Then, the system can accurately detect the defect by comparing the pictures taken by camera before and after the hollow cross cursor displayed by the LCD panel coincided with defect. Finally, the defect coordinates were output through the LCD panel driving device. After five types of defects test, the results show that the system is stable and easy to use, as well as fully automatic, faster recognition and 100% accurate addressing. After the application of the system in the defect coordinates addressing process of H company, the accuracy of defect coordinates increases by more than 30%, which brings significant improvement in repair benefits. The system has great application value in the field of defect coordinates addressing of large size LCD panel.
大尺寸液晶面板缺陷坐标精确定位
large sizeLCD paneldefect coordinatesaccurate addressing
马群刚.TFT-LCD原理与设计[M].北京:电子工业出版社,2011.
MA Q G. TFT-LCD Principle and Design [M]. Beijing: Publishing House of Electronics Industry, 2011. (in Chinese)
简川霞.TFT-LCD表面缺陷检测方法综述[J].电视技术,2015,39(9):146-152.
JIAN C X. Review of TFT-LCD surface defect detection methods [J]. Video Engineering, 2015, 39(9): 146-152. (in Chinese)
JIAN C X, GAO J, CHEN X. A review of TFT-LCD panel defect detection methods [J]. Advanced Materials Research, 2013, 734-737: 2898-2902. doi: 10.4028/www.scientific.net/amr.734-737.2898http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.2898
黄雅纹,陈再良.TFT LCD常见点缺陷的检测与修复[J].现代电子技术,2012,35(23):189-191. doi: 10.3969/j.issn.1004-373X.2012.23.057http://dx.doi.org/10.3969/j.issn.1004-373X.2012.23.057
HUANG Y W, CHEN Z L. Detection and repair of point defects in TFT LCD [J]. Modern Electronics Technique, 2012, 35(23): 189-191. (in Chinese). doi: 10.3969/j.issn.1004-373X.2012.23.057http://dx.doi.org/10.3969/j.issn.1004-373X.2012.23.057
蒋耀华,陈思.黑矩阵遮挡法修复液晶显示屏亮点成功率的研究[J].现代显示,2013(5):10-12. doi: 10.3969/j.issn.1006-6268.2013.05.002http://dx.doi.org/10.3969/j.issn.1006-6268.2013.05.002
JIANG Y H, CHEN S. The research about the success ratio of using black matrix covering method to repair TFT-LCD’s bright pixel defect [J]. Advanced Display, 2013(5): 10-21. (in Chinese). doi: 10.3969/j.issn.1006-6268.2013.05.002http://dx.doi.org/10.3969/j.issn.1006-6268.2013.05.002
吴国东,乔律华,韩海滨,等.ITO区黑化法修复亮点理论模型及工艺参数分析[J].液晶与显示,2021,36(2):246-257. doi: 10.37188/CJLCD.2020-0213http://dx.doi.org/10.37188/CJLCD.2020-0213
WU G D, QIAO L H, HAN H B, et al. Theoretical model and process parameter analysis of ITO area blackening method for repairing bright spot [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(2): 246-257. (in Chinese). doi: 10.37188/CJLCD.2020-0213http://dx.doi.org/10.37188/CJLCD.2020-0213
齐铮.TFT-LCD显示面板制成工艺中的阵列缺陷检测方法研究[D].西安:西安电子科技大学,2011.
QI Z. TFT-LCD display panel array defect detection method research [D]. Xi’an: Xidian University, 2011. (in Chinese)
韩磊,魏平玉,周春霖,等.晕开不良修复方法及影响因素的研究[J].液晶与显示,2017,32(2):110-116. doi: 10.3788/yjyxs20173202.0110http://dx.doi.org/10.3788/yjyxs20173202.0110
HAN L, WEI P Y, ZHOU C L, et al. Particle gap repair method and effect actors analysis [J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(2): 110-116. (in Chinese). doi: 10.3788/yjyxs20173202.0110http://dx.doi.org/10.3788/yjyxs20173202.0110
刘晓源.TFT-LCD的驱动电路设计与面板缺陷检测[D].哈尔滨:哈尔滨理工大学,2020.
LIU X Y. Driving circuit design and panel defect detection of TFT-LCD [D]. Harbin: Harbin University of Science and Technology, 2020. (in Chinese)
冯小波,贺臻,施旭.机器视觉在TFT-LCD点缺陷检测系统中的应用[J].现代显示,2011(9):16-21. doi: 10.3969/j.issn.1006-6268.2011.09.006http://dx.doi.org/10.3969/j.issn.1006-6268.2011.09.006
FENG X B, HE Z, SHI X. Application of machine vision in the TFT-LCD point defect inspection system [J]. Advanced Display, 2011(9): 16-21. (in Chinese). doi: 10.3969/j.issn.1006-6268.2011.09.006http://dx.doi.org/10.3969/j.issn.1006-6268.2011.09.006
李传乐.TFT-LCD缺陷检测系统中的图像处理[D].长春:吉林大学,2016.
LI C L. The image processing in TFT-LCD defect detection system [D]. Changchun: Jilin University, 2016. (in Chinese)
LIN G M, KONG L F, LIU T J, et al. An antagonistic training algorithm for TFT-LCD module Mura defect detection [J]. Signal Processing: Image Communication, 2022, 107: 116791. doi: 10.1016/j.image.2022.116791http://dx.doi.org/10.1016/j.image.2022.116791
LEE M, JEON J, LEE H. Explainable AI for domain experts: a post Hoc analysis of deep learning for defect classification of TFT-LCD panels [J]. Journal of Intelligent Manufacturing, 2022, 33(6): 1747-1759. doi: 10.1007/s10845-021-01758-3http://dx.doi.org/10.1007/s10845-021-01758-3
KIM M, LEE M, AN M, et al. Effective automatic defect classification process based on CNN with stacking ensemble model for TFT-LCD panel [J]. Journal of Intelligent Manufacturing, 2020, 31(5): 1165-1174. doi: 10.1007/s10845-019-01502-yhttp://dx.doi.org/10.1007/s10845-019-01502-y
陈良敏.基于机器视觉的Mura缺陷检测和分类方法研究[D].上海:上海交通大学,2017.
CHEN L M. Detection and classification of Mura defect for TFT-LCD based on computer vision [D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)
朱恒川.基于机器视觉的液晶屏缺陷检测[D].成都:电子科技大学,2018.
ZHU H C. Defect detection in LCD screen based on machine vision [D]. Chengdu: University of Electronic Science and Technology of China, 2018. (in Chinese)
蒋莉,严军,孟伟,等.基于形态学的点阵液晶屏缺陷检测方法的研究[J].电子测量技术,2018,41(16):98-101.
JIANG L, YAN J, MENG W, et al. Research on defect detection methods of dot-matrix LCD based on morphology [J]. Electronic Measurement Technology, 2018, 41(16): 98-101. (in Chinese)
张腾达,卢荣胜,张书真.基于二维DFT的TFT-LCD平板表面缺陷检测[J].光电工程,2016,43(3):7-15. doi: 10.3969/j.issn.1003-501X.2016.03.002http://dx.doi.org/10.3969/j.issn.1003-501X.2016.03.002
ZHANG T D, LU R S, ZHANG S Z. Surface defect inspection of TFT-LCD panels based on 2D DFT [J]. Opto-Electronic Engineering, 2016, 43(3): 7-15. (in Chinese). doi: 10.3969/j.issn.1003-501X.2016.03.002http://dx.doi.org/10.3969/j.issn.1003-501X.2016.03.002
ZHANG Y J, JOO H, KIM J S. Fast detection of Mura defects based on modified watershed algorithm [J]. Journal of Institute of Control, Robotics and Systems, 2017, 23(6): 446-454. doi: 10.5302/j.icros.2017.17.0020http://dx.doi.org/10.5302/j.icros.2017.17.0020
YANG H, MEI S, SONG K Y, et al. Transfer-learning-based online Mura defect classification [J]. IEEE Transactions on Semiconductor Manufacturing, 2018, 31(1): 116-123. doi: 10.1109/tsm.2017.2777499http://dx.doi.org/10.1109/tsm.2017.2777499
LI H Z, LIANG Y S, HE T, et al. AOI multi-core parallel system for TFT-LCD defect detection [J]. Advanced Materials Research, 2012, 472-475: 2325-2331. doi: 10.4028/www.scientific.net/amr.472-475.2325http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.2325
CHEN L C, KUO C C, YEN P A. Automatic optical inspection on TFT-LCD Mura defects using background image reconstruction [J]. Key Engineering Materials, 2007, 364-366: 400-403. doi: 10.4028/www.scientific.net/kem.364-366.400http://dx.doi.org/10.4028/www.scientific.net/kem.364-366.400
崔禹.多背景环境下TFT-LCD视觉缺陷检测算法研究与应用[D].昆明:昆明理工大学,2021.
CUI Y. Research and application of TFT-LCD visual defect detection algorithm in multi-background environment [D]. Kunming: Kunming University of Science and Technology, 2021. (in Chinese)
CEN Y G, ZHAO R Z, CEN L H, et al. Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction [J]. Neurocomputing, 2015, 149: 1206-1215. doi: 10.1016/j.neucom.2014.09.007http://dx.doi.org/10.1016/j.neucom.2014.09.007
OH J H, KWAK D M, LEE K B, et al. Line defect detection in TFT-LCD using directional filter bank and adaptive multilevel thresholding [J]. Key Engineering Materials, 2004, 270-273: 233-238. doi: 10.4028/www.scientific.net/kem.270-273.233http://dx.doi.org/10.4028/www.scientific.net/kem.270-273.233
欧先锋,晏鹏程,向灿群,等.基于FCN的TFT-LCD表面缺陷快速检测算法[J].成都工业学院学报,2017,20(3):6-10.
OU X F, YAN P C, XIANG C Q, et al. Fast detection algorithm for TFT-LCD surface defects based on the full convolution neural networks [J]. Journal of Chengdu Technological University, 2017, 20(3): 6-10. (in Chinese)
马岭,鲁越,蒋慧琴,等.基于小样本学习的LCD产品缺陷自动检测方法[J].智能系统学报,2020,15(3):560-567. doi: 10.11992/tis.201904020http://dx.doi.org/10.11992/tis.201904020
MA L, LU Y, JIANG H Q, et al. An automatic small sample learning-based detection method for LCD product defects [J]. CAAI Transactions on Intelligent Systems, 2020, 15(3): 560-567. (in Chinese). doi: 10.11992/tis.201904020http://dx.doi.org/10.11992/tis.201904020
0
浏览量
171
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构